ชื่อเรื่องวิทยานิพนธ์

การคัดเลือกแบคที่เรียย่อยสถายเมโทมิลจากคิน บริเวณเพาะปลูก

ผู้เขียน

นางสาวชีวาพัฒน์ อรรถพลไพศาล

ปริญญา

วิทยาศาสตรมหาบัณฑิต (ชีววิทยา)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

อ. ดร. สกุณณี บวรสมบัติ ประชานกรรมการ
รศ. วันชัย สนธิไชย กรรมการ
อ. ดร. สุนันทา วังกานต์ กรรมการ

บทคัดย่อ

จากการนำคินบริเวณพื้นที่การเกษตรซึ่งมีการใช้เมโทมิลในการทำลายศัตรูพืชในเขตอำเภอ สารกี จังหวัดเชียงใหม่ ประเทศไทย จำนวน 10 ตัวอย่าง มาแยกแบคทีเรียที่สามารถย่อยสลายเมโท มิลโดยการบ่มใน Ringer's solution เป็นเวลา 24 ชั่วโมง ก่อนนำไปเพาะเลี้ยงในอาหารเหลว Basal Salt Medium (BSM) ที่มีเมโทมิลปริมาณ 250 มิลลิกรัมต่อลิตร ถ่ายเชื้ออย่างต่อเนื่อง 5 ครั้ง บ่มครั้ง ละ 24 ชั่วโมง นำมาหาจำนวนแบคทีเรียทั้งหมดโดยการ spread plate บนอาหารวุ้น BSM ที่มีเมโท มิล ปริมาณ 250 มิลลิกรัมต่อลิตร บ่มที่อุณหภูมิห้อง เป็นเวลา 48 ชั่วโมง จำนวนแบคทีเรียที่เจริญ ใต้ที่ปริมาณดังกล่าวอยู่ในช่วง 1.14 x 10⁵ - 1.62 x 10⁷ cfu/g ลัดแยกแบคทีเรียได้ทั้งหมด 110 ใอ โซเลท เป็นกรัมถบท่อนยาว 19 ไอโซเลท กรัมถบท่อนสั้น 56 ไอโซเลท กรัมบวกท่อนยาว 7 ไอโซเลท และเมื่อนำไอโซเลทที่แยกได้มาคัดเลือกหาแบคทีเรียที่ สามารถเจริญบนอาหารวุ้นที่มีเมโทมิลที่ปริมาณ 4,000, 5,000, 6,000 และ 7,000 มิลลิกรัมต่อลิตร พบว่ามีเพียง 8 ไอโซเลทที่สามารถเจริญได้ดีทุกปริมาณ จากนั้นนำแบคทีเรีย 8 ไอโซเลท ที่คัดเลือกใต้ไปศึกษาการย่อยสลายเมโทมิลในอาหารเหลวที่ปริมาณ 7,000 มิลลิกรัมต่อลิตร เป็นเวลา12 วัน เมื่อตรวจวัดปริมาณเมโทมิลที่เหลือโดยใช้เทคนิค High Performance Liquid Chromatography (HPLC) ทุก 3 วัน พบว่ามีแบคทีเรีย 4 ไอโซเลท ที่ลดเลือก ที่สดดปริมาณเมโทมิลได้มากกว่า 50 เปอร์เซ็นต์

ได้แก่ ใอโซเลท E2, H2, H3 และ H8 ซึ่งลดปริมาณเมโทมิลใด้ 54.7, 56.9, 58.0 และ 60.4 เปอร์เซ็นต์ ตามลำดับ จากนั้นนำแบคทีเรียไอโซเลท H8 มาศึกษาการย่อยสลายเมโทมิลในดินที่ ปริมาณ 0.2 มิลลิกรัมต่อกรัม พบว่าปริมาณของเมโทมิลไม่มีการเปลี่ยนแปลงในทุกการทดลอง เมื่อ ทำการบ่งบอกลักษณะโดยการเทียบลำดับเบสของ 16S rDNA พบว่าไอโซเลท H8 คือแบคทีเรีย

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Thesis Title

Selection of Methomyl-Degrading Bacteria from

Cultivated Soils

Author

Miss Chewapat Uttaponpisarn

Degree

Master of Science (Biology)

Thesis Advisory Committee

Lect. Dr. Sakunnee

Bovonsombut Chairperson

Assoc. Prof. Wanchai

Sonthichai

Member

Lect. Dr. Sunanta

Wangkarn

Member

ABSTRACT

Ten soil samples in agricultural areas where methomyl have been used as pesticides in Sarapee District, Chiang Mai, Thailand were collected to select methomyl-degrading bacteria. They were inoculated in Ringer's solution and incubated at room temperature for 24 hours, then transferred consecutively 5 times into Basal Salt Medium (BSM) broth, containing 250 milligrams/litres of methomyl and incubated at room temperature for 24 hours. The cultures were subsequently spread on BSM agar, containing 250 milligrams/litres of methomyl and incubated at room temperature for 48 hours. Methomyl-degrading bacteria were found in all soil samples at concentration of between 1.14 x 10⁵ - 1.62 x 10⁷ cfu/g. One hundred and ten bacterial isolates, 19 gram-negative rods, 56 gram-negative short rods, 7 gram-positive rods and 28 gram-positive short rods were obtained. The selected methomyl-degrading bacterial isolates were inoculated onto BSM agar containing 4,000, 5,000, 6,000 and 7,000 milligrams/litres of methomyl. Eight isolates grew well in all methomyl concentrations. They were cultivated in BSM broth, containing 7,000 milligrams/litres of methomyl for 12 days. Methomyl residues were analysed using high performance liquid chromatography (HPLC) every 3 days. Four isolates namely, E2, H2, H3 and

H8 degraded methomyl more than 50% (54.7, 56.9, 58.0 and 60.4%, respectively). Subsequently, methomyl degradation by H8 in soil containing methomyl 0.2 milligrams/grams soil was studied. Unfortunately the amount of methomyl was not changed in any of the experiments. Isolate H8 was sequenced using 16S rDNA and identified as *Klebsiella* sp. P2.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved