TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER 1 INTRODUCTION	
1.1 Principles, rationale and hypothesis	1
1.2 Research objective	2
1.3 Research scope	2
1.4 Usefulness of the research	3
1.5 Research locations	3
CHAPTER 2 LITERATURE REVIEW	
2.1 Moisture content in terms of electrical capacitance and dielectric	6
constant	
2.2 Moisture content in term of water activity	10
2.3 Prediction models	11
CHAPTER 3 MATERIALS AND METHODS	
3.1 Methodology	13
3.1.1 Moisture measurement system design	13
3.1.2 Transformer	14
3.1.3 Capacitor filter circuit	15
3.1.4 Regulator circuit	16
3.1.5 Oscillator circuit operations	17
3.1.6 Dried longan aril-based capacitor	19

3.1.7 Frequency divider circuit	21
3.1.8 Processing and display circuit	22
3.2 Experimental setup	25
3.2.1 Dried longan aril preparation	25
3.2.2 Blind testing	29
3.2.3 Evaluation measures	29
3.2.3.1 Absolute error	29
3.2.3.2 Accuracy	30
3.2.3.3 Precision	31
3.3 Moisture content prediction model based on multilayer perceptrons and	31
support vector regression	
3.3.1 Artificial neural network	31
3.3.2 Support vector regression	32
3.3.3 Moisture content prediction models	34
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Quality of dried longan	36
4.1.1 Weight ratio of aril, pericarp and seed	37
4.2 Electrical capacitance of dried longan-based capacitor	39
4.3 Dielectric constant	42
4.4 Bulk density	43
4.5 Water activity	44
4.6 Blind testing	45
4.7 Measurement evaluation	46
4.7.1 Absolute value	46
4.7.2 Accuracy OV Chiang Mai Universit	47
4.7.3 Precision	48
4.8 Results for prediction models based on multilayer perceptrons and	49
support vector regression	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
4.1	Quality of dried longan after drying by a hot air oven at moisture content level of 13.5% Wb	37
4.2	Moisture content for each part of dried longan: whole longan,	37
	pericarp, aril + seed, aril, and seed	
4.3	Weight ratio of aril, peel, and seed of whole dried longan fruits	38
4.4	Measured electrical capacitances for dried longan aril with	40
	moisture content level ranging from 10 to 25 % Wb and bulk	
	density ranging from 1,300 to 1,600 kg/m ³	
4.5	Predictive equations for moisture content from electrical	42
	capacitance (x : electrical capacitance (pF) and y : moisture	
	content (% Wb))	
4.6	Relationship among electrical dielectric constant, bulk density	42
	and moisture content of dried longan aril	
4.7	Predictive equations for moisture content from dielectric	43
	constant of dried longan aril (x : dielectric constant and y :	
	moisture content (% Wb))	
4.8	Water activity at 10, 14, 18, 22 and 25 % Wb moisture contents	45
4.9	Absolute value and absolute error of measured values at each	47
	moisture content level	
4.10	Accuracy value and percentage of accuracy of measured values	48
	at each moisture content level	
4.11	Precision of measured values at each moisture content level	48
4.12	Average mean absolute error of the training sets using four-fold	49
	cross validation	
4.13	Average mean absolute error of the validation sets using four-	50
	fold cross validation	

LIST OF FIGURES

Figure		Page
2.1	Longan tree at the orchard	5
2.2	Fresh longan fruits	5
2.3	Principle of capacitance measurement	6
3.1	Diagram of overall moisture measurement system	14
3.2	Direct-current power supply of the moisture measurement system	14
3.3	Regulator circuit in the moisture measurement system	17
3.4	ICL8038-based oscillator circuit	18
3.5	Proposed dried longan aril-based capacitor	20
3.6	Oscillator circuit using dried longan aril as dielectric material	20
3.7	Frequency divider circuit	22
3.8	Processing and display circuit of the moisture measurement	23
	system	
3.9	Inside the real prototype moisture measurement system	24
3.10	Information of moisture content and dielectric constant shown on	24
	LCD	
3.11	Prototype of moisture meter	25
3.12	Longan drying process: moisture content was estimated by hot	27
	air oven	
3.13	Longan drying process: the initial moisture content of 75% Wb	27
	was decreased to 13.5% Wb	
3.14	Experimental setup for dried longan aril moisture content	28
	measurement system	
3.15	Actual moisture content dried at 70 °C under vacuum for about 8	28
	hours or until their weights are constants	
3.16	Feed forward neural network	32
3.17	Architecture of SVR-based moisture content prediction model	34
4.1	Components of dried longan: pericarp, aril, and seed	36
4.2	Relationship between moisture content and drying time	39

- 4.3 Moisture content measurement of dried longan aril with a 40 moisture meter
- 4.4 Moisture meter and corresponding LCD display 41
- 4.5 Relationship between the electrical capacitance and dielectric 41 constant at five levels of moisture contents and three bulk densities
- 4.6 Relationship between the electrical capacitance and dielectric 44 constant for three levels of bulk density and five moisture content levels

Relationship between the moisture content and water activity

4.7

45

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved