ชื่อเรื่องวิทยานิพนธ์

การสลายไตรคลอโรเอทิลีนโดยกระบวนการเร่ง ปฏิกิริยาด้วยแสงในถังปฏิกรณ์แบบทรูแบทช์ที่ มีการหมุนเวียน

ผู้เขียน

นางสาวศุภวรรณ เม่นแย้ม

ปริญญา

วิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมสิ่งแวคล้อม)

อาจารย์ที่ปรึกษาวิทยานิพนธ์

รศ.คร. ขจรศักดิ์ โสภาจารีย์

บทคัดย่อ

งานวิจัยนี้ได้ทำการศึกษาการสถายไตรคลอโรเอทิลีนโดยกระบวนการเร่งปฏิกิริยาด้วยแสง ที่มีไททาเนียมไดออกไซด์แบบแขวนลอย ในถังปฏิกรณ์แบบทรูแบทช์ที่มีการหมุนเวียน ซึ่งเป็นราง หน้าตัดสีเหลี่ยมผืนผ้า กว้าง 30 ซม. ยาว 90 ซม. หลอดรังสียูวี ขนาด 30 วัตต์ จำนวน 4 หลอดถูกติด ตั้งอยู่เหนือพื้นราง ความเข้มข้นเริ่มต้นของไตรคลอโรเอทิลีนแปรผันในช่วง 30-150 มก./ล. ปริมาณไททาเนียมไดออกไซด์ ที่ใช้ในการทดลองมีค่าเท่ากับ 1 ก./ล. ทุกการทดลอง น้ำเสียที่ใช้ในการทดลองเป็นน้ำเสียที่เตรียมขึ้นโดยใช้น้ำปราสจากอิออนผสมกับไตรคลอโรเอทิลีน ให้ได้ความเข้มข้นต่างๆที่ต้องการ

จากผลการศึกษาพบว่า การสลายตัวของใตรคลอโรเอทิลีนโดยกระบวนการเร่งปฏิกิริยา ค้วยแสงที่มีใททาเนียมใดออกใชค์แขวนลอย เกิดขึ้น 100% ที่เวลา 240 นาที การเพิ่มความเข้มข้น เริ่มต้นจะส่งผลให้อัตราการเกิดปฏิกิริยาเพิ่มขึ้นซึ่งเป็นไปตาม Langmuir – Hinshelwood model การทคลองที่ความสูงของหลอดไฟระดับที่ 1 (7 ซม.) พบว่าค่าคงที่ของการสลายตัวของใตรคลอโร เอทิลีน (k) และค่าคงที่ของการดูดซับ (K) เท่ากับ 11.1359 มก./ล.-นาที และ 0.0018 ล./มก. การทคลองที่ความสูงของหลอดไฟระดับที่ 2 (5 ซม.) พบว่าค่าคงที่ของการสลายตัวของใตรคลอโร

เอทิลีน (k) และค่าคงที่ของการคูดซับ (K) เท่ากับ 11.6144 มก./ล.-นาที และ 0.0021 ล./มก. และการ ทคลองที่ความสูงของหลอดไฟระดับที่ 3 (3 ซม.) พบว่าค่าคงที่ของการสลายตัวของไตรคลอโร เอทิลีน (k) และค่าคงที่ของการคูดซับ (K) เท่ากับ 11.8483 มก./ล.-นาที และ 0.0024 ล./มก. ตามลำดับ ในการเปรียบเทียบประสิทธิภาพการสลายตัวของไตรคลอโรเอทิลีนพบว่า ความสูงของ หลอดไฟระดับที่ 3 (3 ซม.) มีประสิทธิภาพสูงสุด รองลงมาเป็นความสูงของหลอดไฟระดับที่ 2

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Thesis Title Trichloroethylene Degradation by Photocatalytic

Process in a Trough Batch Reactor with Recycle

Author Miss Supawan Menyam

Degree Master of Engineering (Environmental Engineering)

Thesis Advisor Assoc. Prof. Dr. Khajornsak Sopajaree

ABSTRACT

In this research, the effects of photocatalytic process for a Trough Batch Reactor with Recycle on trichloroethylene degradation in wastewater has been studied. All experiments were conducted by using a batch reactor consisting of a rectangular flat trough with the dimensions of $30 \times 90 \text{ cm}^2$ with a 4x30 W UV bulb placed above the trough. Condition of the method was TiO_2 1 g/L in used with trichloroethylene 30-150 mg/L. Solutions used in this study were prepared by adding certain amount of trichloroethylene to deionized water.

The results show that 100% trichloroethylene degraded in 240 minute by photocatalytic process. Increasing the initial concentration increases the reaction rate, conforming with the Langmuir - Hinshelwood model. From the experiment results, the rate constant (k) and Langmuir equilibrium constant (K) of level 1 (7 cm) were 11.1359 mg/L-min and 0.0018 L/mg, the rate constant (k) and Langmuir equilibrium constant (K) of level 2 (5 cm) were 11.6144 mg/L-min and 0.0021 L/mg and the rate constant (k) and Langmuir equilibrium constant (K) of level 3 (3 cm) were 11.8483 mg/L-min and 0.0024 L/mg respectively. By comparing the photodegradation efficiency of trichloroethylene, it has been found that the photodegradation efficiency of level 3 (3 cm) is the highest whereas level 2 (5 cm) is the second.