ช่่อเรื่องวิทยานิพนธ์

ผู้เขียน

ปริญญา

ผลของการเติมทรายละเอียดต่อการเกิดเม่ดตะกอน ของระบบยูเอเอสบี นางสาว สุภาวดี บุตร โพธิ

วิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมสิ่งแวดล้อม) อาจารย์ที่ปรึกษาวิทยานิพนธ์ รองศาสตราจารย์ ดร. เสนีย์ กาญูจนวงศ์

การวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของการเติมทรายละเอียดต่อการเกิดเม็ดตะกอน ของระบบยูเอเอสบีในช่วงเริ่มต้นระบบ โดยใช้แบบจำลองถังปฏิกร ณ์ยูเอเอสบีระดับ ห้องปฏิบัติการ จำนวน 3 ถัง ปริมาตรใช้งานรวม 25 ล./ถัง ใช้ตะกอนหัวเชื้อจากถังหมักตะกอน โรงบำบัดน้ำเสียมหาวิทยาลัยเชียงใหม่ให้มีความเข้มข้นตะกอนเท่ากับ 10 ก.VSS/ล. น้ำเสียสังเคราะห์มีค่าซีโอดีประมาณ 5,000 มก./ล. ควบคุมความเร็วไหลขึ้นเท่ากับ 0.4 ม./ชม. การทดลองที่ 1 เตรียมน้ำเสียสังเคราะห์จากน้ำสียชุมชน 10% โดยปริมาตรผสมกับน้ำประปา 90% โดยปริมาตร ใช้ระยะะวลาทดลอง 165 วัน โดยถังที่ 1 ไม่เติมทรายละเอียด ถังที่ 2 และ 3 เติมทราย ละเอียดตอนเริ่มต้นครั้งเดียว อัตราการเติม 10 และ 50 มก./ก. SS ตะกอนหัวเชื้อ ตามลำดับ อัตราภาระบรรทุกสารอินทรีย์สุดท้ายทั้ง 3 ถังเท่ากับ 4.13 กก.ซีโอดี/(มื่.วัน) ขนาดเม็ดตะกอน ระดับ 1.2 ม.จากก้นถังทั้ง 3 ถัง ส่วนใหญ่มีขนาด $0.21-0.43$ มม., $0.11-0.21$ มม. และ $0.11-0.21$ มม. ตามลำดับ ประสิทธิภาพการกำจัดซีโอดีเฉลี่ยช่วงท้ายการทดลอง (เทียบกับซีโอดีกรองน้ำออก) เท่ากับร้อยละ $45.3,48.4$ และ 49.9 ตามลำดับ การทคลองที่ 2 เตรียมน้ำเสียสังเคราะห์จากน้ำสีย ชุมชน 100% โดยปริมาตร ถังที่ 1 ไม่เติมทรายละเอียด ถังที่ 2 และ 3 เติมทรายละเยียด 100 และ 400 มก./ก.SS ตะกอนหัวเชื้อ ตามลำดับ ใช้ระยะเวลาทดลอง 90 วัน พบว่า อัตราภาระบรรทุก สารอินทรีย์สุดท้ายทั้ง 3 ถัง เท่ากับ $2.36,4.13$ และ 5.46 กก.ซีโอดี/(มื่ \cdot วัน) ขนาดเม็ดตะกอนระดับ 1.2 ม. จากก้นถังทั้ง 3 ถังส่วนใหญ่่มีขนาด $0.11-0.21$ มม., $0.11-0.21$ มม. และ 0.21-0.43 มม.

ตามลำดับ ประสิทธิภาพการกำจัดซีโอดีเฉลี่ยช่วงท้ายการทดลอง (เทียบกับซีโอดีกรองน้ำออก) ทั้ง 3 ถัง เท่ากับร้อยละ $62.2,54.3$ และ 73.4 ตามลำดับ ผลการศึกษาพบว่า การเติมทรายละเอียด 400 มก./ก.SS ทำให้สมรรถนะระบบสูงขึ้นเล็กน้อยและใช้ระยะเวลาเริ่มต้นระบบสั้นลง

Thesis Title

Author

Degree

Thesis Advisor

Effects of Fine Sand Addition on Granulation of UASB System

Ms. Supawadee Bhotpo

Master of Engineering (Environmental Engineering)

The objective of this study was to investigate the effects of fine sand addition on granulation of UASB system during start up. Three lab-scale reactors, having effective volume $25 \mathrm{~L} /$ tank, were employed to treat synthetic wastewater (COD $5,000 \mathrm{mg} / \mathrm{l}$) at the upflow velocity $0.4 \mathrm{~m} / \mathrm{h}$. The reactors were seeded with digested sludge from CMU waste water treatment plant at initial concentration of $10 \mathrm{gVSS} / 1$. Experiment 1 was conducted with influent prepared from 10% domestic wastewater by volume and 90% tap water by volume. The first reactor (R1) was operated as control unit without fine sand addition. The second (R2) and third (R3) reactors were added with fine sand during start up at 10 and $50 \mathrm{mg} / \mathrm{gSS}$ of seed. The final organic loading rate (OLR) in all reactors were $4.13 \mathrm{~kg} \mathrm{COD} /\left(\mathrm{m}^{3} \cdot \mathrm{~d}\right)$ after 165 d . The granule sizes at 1.20 m depth 3 reactors were mostly $0.21-0.43 \mathrm{~mm}, 0.11-0.21 \mathrm{~mm}$ and $0.11-0.21 \mathrm{~mm}$, respectively. The average COD removal efficiencies of three reactors at the last period, based on effluent FCOD, were $45.3,48.4$ and 49.9%, respectively. Experiment 2 was conducted with influent prepared from 100% domestic wastewater by volume. The second (R2) and third (R3) reactors were added with fine sand during start up at 100 and $400 \mathrm{mg} / \mathrm{gSS}$ of seed. After 90 d , all reactors were finally operated at OLRs of 2.36, 4.13 and $5.46 \mathrm{~kg} \mathrm{COD} /\left(\mathrm{m}^{3} \cdot \mathrm{~d}\right)$, respectively. At 1.20 m depth, granule sizes in 3 reactors were mostly $0.11-0.21 \mathrm{~mm}, 0.11-0.21 \mathrm{~mm}$ and $0.21-0.43 \mathrm{~mm}$, respectively.

The efficiencies of three reactors in terms of COD removals during the last period were $62.2,54.3$ and 73.4%, respectively. The addition of fine sand at $400 \mathrm{mg} / \mathrm{gSS}$ could shorten the star up period and slightly improved the treatment efficiency.

