ชื่อเรื่องวิทยานิพนธ์

การประเมินวัฏจักรชีวิตและการวิเคราะห์ต้นทุนของการกลั่น เอทานอลโดยการใช้ตัวเก็บรังสีแสงอาทิตย์ ชนิดท่อความร้อน

ชื่อผู้เขียน

นางสาวธีรนั้นทา ฤทธิ์มณี

วิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมพลังงาน

คณะกรรมการสอบวิทยานิพนธ์

ศ. คร. ทนงเกียรติ เกียรติศิริโรจน์

ประธานกรรมการ

คร. ณัฐ วรยศ

กรรมการ

คร. นคร ทิพยาวงศ์

กรรมการ

รศ. วารุณี เตีย

กรรมการ

บทคัดย่อ

งานวิจัยนี้ได้ศึกษาการประเมินวัฏจักรชีวิตและการวิเคราะห์ต้นทุนของการกลั่นเอทานอลโดยการใช้ตัวเก็บรังสีแสงอาทิตย์ชนิดท่อความร้อน เปรียบเทียบกับการกลั่นโดยใช้น้ำมันเตาเกรด C โดยในการวิเคราะห์วัฏจักรชีวิตนั้นได้ใช้วิธีการวิเคราะห์ 2 วิธี คือ 1. Numerical Environmental Total Standard [NETS] 2. วิธีการประเมินวัฏจักรชีวิตที่ถูกพัฒนาขึ้นเป็นโปรแกรมคอมพิวเตอร์ เรียกว่า SimaPro โดยที่การศึกษานี้จะพิจารณาถึงผลกระทบทางสิ่งแวดล้อมที่เกิดขึ้นในแต่ละขั้นตอน และใช้วิธี Externality cost ร่วมกับวิธี NETS โดยวิธีการนี้ทำให้สามารถคิดเทียบค่าผลกระทบต่อสิ่งแวดล้อมออกมาเป็นเงินได้ จากนั้นก็ทำการวิเคราะห์ต้นทุนของการกลั่นเอทานอลทั้งกรณีรวมและไม่รวมผลกระทบต่อสิ่งแวดล้อม

จากผลการวิเคราะห์ด้วยวิธี NETS และโปรแกรมสำเร็จรูปพบว่าการกลั่นเอทานอลโดย การใช้ตัวเก็บรังสีแสงอาทิตย์มีค่าผลกระทบต่อสิ่งแวคล้อมรวมเท่ากับ 209.61 [NETS] และ 14.4 PE_T ส่วนการกลั่นโดยการใช้น้ำมันเตาเกรด C มีผลกระทบต่อสิ่งแวคล้อมเท่ากับ 2,064.34 [NETS] และ 36.1 PE_T จะเห็นได้ว่าในการประเมินก่าด้วยวิธีการประเมินวัฏจักรชีวิตนั้น การกลั่นเอทานอล โดยใช้น้ำมันเตาเกรด C จะเกิดผลกระทบทางสิ่งแลดล้อมมากกว่า เนื่องจากการกลั่นเอทานอลด้วย น้ำมันเตาเกรด C นั้นมีอัตราการใช้ไฟฟ้ามากกว่าและจากตัวน้ำมันเตาเองทำให้เกิดผลกระทบทาง สิ่งแวดล้อมมากกว่า ซึ่งทำให้เกิดปัญหาภาวะฝนกรดในบรรยากาศและการลดลงของเชื้อเพลิงฟอส ซิล ในการหาต้นทุนในการกลั่นกรณีไม่รวมผลกระทบต่อสิ่งแวดล้อม การกลั่นเอทานอลที่ความ เข้มข้น 85% จากความเข้มข้นเริ่มต้น 10% โดยปริมาตร ด้วยตัวเก็บรังสีแสงอาทิตย์และน้ำมันเตา จะมีค่า 3.16 บาท/สิตร และ 2.37 บาท/สิตร ตามลำดับ ส่วนต้นทุนในกรณีที่รวมค่าผลกระทบต่อสิ่ง แวดล้อมจะมีค่า 3.24 บาท/สิตร และ 3.39 บาท/สิตร ตามลำดับ

Thesis Title

Life Cycle Assessment and Cost Analysis of Ethanol

Distillation with Heat Pipe Solar Collector

Author

Miss Theeranuntha Rithmanee

M. Eng.

Energy Engineering

Examining Committee

Prof. Dr. Tanongkiat kiatsiriroat

Chairman

Lect. Dr. Nat Vorayos

Member

Lect. Dr. Nakorn Tipayawong

Member

Assoc. Prof. Warunee Tia

Member

ABSTRACT

Two methods of life cycle assessment for distillation with heat pipe solar collector were considered in this research work. The frist was Numerical Environmental Total Standard, [NETS] and the second was the method developed from a computer software "SimaPro". The impacts at each phase of the product life have been considered and the impacts changing the heat source from the solar collector to bunker oil grade C have also been investigated. The environment impacts on the costs evaluation have also been considered by using the [NETS] method and externality cost methods.

It is found that by the [NETS] method and the SimaPro software, the distillation with heat pipe solar collector in this study gave the environmental impacts which was found to be 209.61 [NETS] and 14.4 PE_T . For distillation with bunker oil grade C the environmental impacts were 2,064.34 [NETS] and 36.1 PE_T . It is noticed that for distillation with heat pipe solar collector the total environmental impact seems to be higher than distillation with bunker oil grade

C. This is because the distillation with bunker oil consumes more electricity which results in high impact on acidification and the fossil fuel depletion. The cost of distillation ethanol, when the cost of the environmental impacts is excluded, distillation with heat pipe solar collector is 3.16 Baht/liter and distillation with bunker oil grade C is 2.37 Baht/liter. When the cost of the environmental impacts is included, distillation with heat pipe solar collector is 3.24 Baht/liter and distillation with bunker oil grade C is 3.39 Baht/liter.