TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
ABSTRACT (English)	v
ABSTRACT (Thai)	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
NOMECLATURE	xiii
CHAPTER I: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Research Question	4
1.4 Significance of Research	4
1.5 Research Objective	4
1.6 Outline of the Thesis	4
CHAPTER II: THEORY AND LITERATURE REVIEW	6
2.1 Packaging Foam	6
2.2 Expanded Polystyrene	6
2.2.1 Materials and Manufacturing	7
2.2.2 Properties of EPS	8
2.3 Thermal Comfort Condition	11
2.4 Insulating Values and Energy Saving	13
2.5 Building Wall Materials and Thermal Properties	Y 14
2.5.1 Conventional Materials and their Thermal Properties	14
2.5.2 Previous Researches of Development Exterior Wall Systems	U
Incorporating EPS	15

2.6 Heat Transfer Theory	16
2.6.1 Principle of Heat Conduction	17
2.6.2 Thermal Resistance of Multilayer Wall	18
2.6.3 Heat Conduction in Porous Media	19
2.7 The Proposed Idea to Use EPS Packaging Foam	20
CHAPTER III: RESEARCH OBJECTIVES AND METHODOLOGY	22
3.1 Research Objectives	22
3.2 Research Methodology	22
3.2.1 Research Design	22
3.2.2 Review of Testing Methods and Apparatuses	23
3.2.3 Apparatus and Experimental Design for this Study	29
3.2.4 Limitation	32
CHAPTER IV: EXPERIMENTS AND RESULTS	33
4.1 Breaking down Packaging EPS Foam	33
4.1.1 Purpose	33
4.1.2 Breaking down Methods and their Resultant EPS Foam Particles	33
4.2 Primary Testing of Hot Box and Construction of Referent Data	37
4.2.1 Purpose and Approach	37
4.2.2 Specimens	37
4.2.3 Tools and Experimental Procedure	38
Salan 24.2.4 Result	39
4.3 Experiment on the Effect of EPS Particle Sizes and Thermal Resistances	44
Copyrigh ^{4.3.1 Purpose} _{4.3.2 Specimens} Chiang Mai University	44 44
4.3.3 Experimental Procedure	45
4.3.4 Result	46
4.3.5 Approximation of R-values of Particle Sizes of Packaging EPS	
Foam	50

4.4 Thermal Resistance Investigation on EPS Chunks Mixed with Particles	54
4.4.1 Purpose	54
4.4.2 Specimens	54
4.4.3 Experimental Procedure	55
4.4.4 Result	55
4.4.5 Approximating of R-value of EPS Chunks-Particles Mixes	59
4.5 Time and Cost Analysis	62
4.6 Selection of Test Specimen and Determination	63
4.6.1 Selection of Test Specimen	63
4.6.2 Grain Sizes Distribution of EPS Particles Size 0.1-15	63
CHAPTER V: APPLICATION	65
5.1 Thermal Resistance Performance of Conventional Wall Systems	
with Selected Broken-Down Packaging EPS Foam	65
5.1.1 Purpose	65
5.1.2 Specimens	65
5.1.3 Experimental Procedure	67
5.1.4 Results	67
5.2 Conclusion	69
CHAPTER VI: DISCUSSION AND CONCLUSION	70
6.1 Discussion	70
a a 6.2 Conclusion	71
REFERENCES	73
Copyright ^{\overline} by Chiang Mai University	Y
CURRICULUM VITAE	-80
All rights reserved	U

LIST OF TABLES

Table		Page
Table 2.1	EPS properties base on ASTM Standard C578	9
Table 2.2	Construction materials and their thermal properties	14
Table 2.3	Glass wool insulation base on SFG (2007)	15
Table 4.1	Approximation of thermal resistance of each sample	54
Table 4.2	Approximation of thermal resistance of chunks-mixes particles	62
Table 4.3	Cost of each particle size of packaging EPS foam	62

LIST OF FIGURES

Figure		Page
Figure 2.1	Diagram showing strategies to achieve thermal comfort in	
	buildings in hot and humid climate	12
Figure 2.2	Schematic of heat flow in multi-layers of wall	18
Figure 2.3	Schematic of porous media and representative element volume	19
Figure 2.4	Wall insulation panel incorporating particles of packaging EPS foam	21
Figure 3.1	Research process	23
Figure 3.2	Schematic of a generic enclosure with single ABE wall	28
Figure 3.3	Principle solar heat test-cell	29
Figure 3.4	Top view outline of all heating and metering cells prepared for testing	g 30
Figure 3.5	Section view (A-A) of heating and metering cells and test	
775	specimens	30
Figure 3.6	Schematic of hot box assembly	31
Figure 4.1	Shredding packaging foam by papaya shredder yields particles	
E	size 0.1-3	34
Figure 4.2	Scratching packaging foam by nail pad yields a mix-particle	
the second s	size 0.1-15	35
Figure 4.3	Packaging EPS particles Size 0.1-6, Size 6-10 and Size 10-15	35
Figure 4.4	Breaking down packaging foam by hand picking and particles	
	obtained	36
Figure 4.5	Wall panel to be used as partition between heating and metering cells	37
Figure 4.6	Thermometer sensor and thermo-gun	39
Figure 4.7	Air temperatures in metering cells when heating cell was heated	
Conveigh	up to 50°C	40
Figure 4.8	Air temperatures in metering cells when heating cell was heated	. Y
All r	up to 55°C fs reserve	041
Figure 4.9	Air temperatures in metering cells when heating cell was heated	01
	up to 60°C	42
Figure 4.10	Plots of temperatures in metering cells separated by foam with	
	different thickness	43
Figure 4.11	Plot of temperatures in all the cells for testing temperature 50°C	47

	Figure 4.12	Plot of temperatures in all the cells for testing temperature 55°C	48
	Figure 4.13	Plot of temperatures in all the cells for testing temperature 60°C	49
	Figure 4.14	Plot of avarage results from the experiments on EPS particles	
		at the testing temperature of 50°C with the reference materials	
		of solid foam panels	51
	Figure 4.15	Plot of avarage results from the experiments on EPS particls	
		at the testing temperature of 55°C with the reference materials	
		of solid foam panels	52
	Figure 4.16	Plot of avarage results from the experiments on EPS particls	
		at the testing temperature of 60°C with the reference materials	
		of solid foam panels	53
	Figure 4.17	Plot of temperatures in all the cells for testing temperature 50°C	56
	Figure 4.18	Plot of temperatures in all the cells for testing temperature 55°C	57
	Figure 4.19	Plot of temperatures in all the cells for testing temperature 60°C	58
	Figure 4.20	Plot of avarage results from the experiments on EPS chunks-particl	
	T	mixes at the test temperature of 50°C with the reference materials	
		of solid foam panels	59
	Figure 4.21	Plots of avarage results from the experiments on EPS chunks-particl	
		mixes at the test temperature of 55°C with the reference materials	
		of solid foam panels	60
	Figure 4.22	Plot of avarage results from the experiments on EPS chunks-particl	
		mixes at the test temperature of 60°C with the reference materials	
8		of solid foam panels	61
d	Figure 4.23	Grain size distribution of EPS particles Size 0.1-15 mm	64
	Figure 5.1	Lightweight wall systems installed in the hot box	66
C	Figure 5.2	Masonry wall systems installed in the hot box	66
Α	Figure 5.3	Temperatures in the heating cell and in the metering cells separated	
		by lightweight wall systems	67
	Figure 5.4	Temperatures in the heating cell and in the metering cells separated	
		by masonry wall systems	68

NOMECLATURE

Area, m^2 A Specific heat, J/kg °C С Thermal conductivity, W/m•°C or Btu/h•ft•°F K 67.0213 Time, min t Density, kg/m³ ρ Temperature, °C T Thickness, cm x Thermal resistance, °C•m²/W or °F•ft²•h/Btu R Heat transfer, W or Btu/h Q Diameter of particle dpTHE MAI

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved