### TABLE OF CONTENTS

|                                                           | pages       |
|-----------------------------------------------------------|-------------|
| ACKNOWLEDGMENTS                                           | iii         |
| ABSTRACT (IN ENGLISH)                                     | iv          |
| ABSTRACT (IN THAI)                                        | v           |
| TABLE OF CONTENTS                                         | vii         |
| LIST OF TABLES                                            | ix          |
| LIST OF FIGURES                                           | X           |
| LIST OS ABBREVIATIONS                                     | xiii        |
| CHAPTER I INTRODUCTION                                    | 1           |
| 1. Carcinogenesis                                         | 1           |
| 2. Normal and cancer cell biochemistry and physiology     | 3           |
| 2.1 Cellular energetic state                              | 3           |
| 2.2 Cellular redox state                                  | 5           |
| 2.2.1 Cellular oxidants and antioxidants                  | 5           |
| 2.2.2 The beneficial functions of reactive oxygen species | 10          |
| pyright (ROS) Chiang Mai Univer                           |             |
| 2.3 Cellular oxidative stress                             | <b>e</b> 13 |
| 2.4 Growth/ death                                         | 14          |
| 3 Flavonoids                                              | 18          |

| 2       | 4. Objectives                                                    | 20 |
|---------|------------------------------------------------------------------|----|
| CHAPTER | R II MATERIALS AND METHODS                                       | 21 |
|         | 1. Cell lines and culture conditions                             | 21 |
|         | 2. Mn-SOD cDNA transfection of rat cells                         | 21 |
|         | 3. SOD activity gel assay                                        | 22 |
|         | 4. Cell growth assay                                             | 23 |
| 4       | 5. Quercetin treatment                                           | 23 |
|         | 6. Determination of reactive oxygen species production           | 23 |
| 1 500°  | 7. Immunofluorescent staining for 4-hydroxynonenal               | 24 |
|         | 8. Immunofluorescent staining for microtubule-associated protein |    |
|         | light chain 3 (MAP-LC3)                                          | 25 |
| 9       | 9. Cell staining procedures with Hoechst 33342                   | 25 |
|         | 10. Statistic Analysis                                           | 26 |
| CHAPTER | R III RESULTS                                                    | 27 |
| 1       | 1. Selection of stable Mn-SOD transfected clones                 | 27 |
| 2       | 2. Effects of <i>Mn-SOD</i> gene transfect on growth rate        | 28 |
| dan     | 3. Intracellular reactive oxygen species (ROS <sub>i</sub> )     | 30 |
| opyrig  | 4. Determination of 4-HNE Protein adducts                        | 33 |
|         | 5. Quercetin inhibits cell growth                                | 39 |
| (       | 6. Quercetin induced autophagy                                   | 40 |
| 5       | 7. Determination of pycnotic nuclei in apoptotic cells           | 44 |
| CHAPTER | R IV DISCUSSION                                                  | 45 |

| CHAPTER V CONCLUSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 |
| APPENDIX ON SIELLE OF THE SECOND OF THE SECO | 64 |
| CURRICULUM VITAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

# ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### LIST OF TABLES

| Table                                                            | page |
|------------------------------------------------------------------|------|
| 1. Principal cellular anti-oxidants that scavenge or inactivate  |      |
| excessive ROS and thereby protect cells from oxidative damage.   | 8    |
| 2. The specific growth rate of RGM1, RGK1 and Mn-SOD transfected |      |
| cells                                                            | 31   |
|                                                                  |      |
|                                                                  |      |
|                                                                  |      |
|                                                                  |      |
|                                                                  |      |
|                                                                  |      |
|                                                                  |      |

## ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

### LIST OF FIGURES

| Figure                                                                                                | Page   |
|-------------------------------------------------------------------------------------------------------|--------|
| 1. The generation of ROS by mitochondria.                                                             | 6      |
| 2. ROS generated by microsomal mono-oxygenases, which have cytochrome                                 | e      |
| P450 as a central link and ROS generated by phagocytes kill infectious                                | S      |
| microorganisms and cancer cells.                                                                      | 7      |
| 3. Schematic representation of apoptosis. ROS generated by mitochondria are                           | e      |
| essential mediators of apoptosis.                                                                     | 12     |
| 4. The non-denatured gel of Mn-SOD activity assay.                                                    | 28     |
| 5. Growth curves of RGM1, Mn-SOD transfected RGM1 clone no. 6 and Mn-                                 |        |
| SOD transfected RGK1 clone no. 10 cells                                                               | 29     |
| 6. Confocal micrographs of untreated RGM1 (i) and RGK1 (iv) and treated with                          |        |
| $100~\mu\text{M}$ (ii, v) and $200~\mu\text{M}$ (iii, vi) quercetin, respectively. Cells were stained |        |
| with HPF at 24 hours after treatments according to materials and methods.                             | 31     |
| 7. Confocal micrographs of untreated Mn-SOD transfected RGM1 clone no. 6 (i                           | )31    |
| and Mn-SOD transfected RGK1 clone no. 10 (iv) and treated with 100 $\mu M$ (ii                        | , I 1. |
| v) and 200 μM (iii, vi) quercetin, respectively. Cells were stained with HPF a                        | t      |
| 24 hours after treatments according to materials and methods.                                         | 31     |
| 8. Effects of Mn-SOD and exogenous quercetin (QT) on ROS <sub>i</sub> ; for Mn-SOD in                 | 1      |
| RGM1 and RGK1 cells (a) and for indicated concentration of querceting                                 | 1      |
| demined at 2 hours (b) and 24 hours (c).                                                              | 33     |

| 9. Confocal micrographs of Mn-SOD transfected RGM1 clone no. 6 in the            |    |
|----------------------------------------------------------------------------------|----|
| presence of 0.01% (v/v) DMSO for 2 and 24 hours.                                 | 34 |
| 10. Confocal micrographs of RGM1, RGK1, Mn-SOD transfected RGM1 clone            |    |
| no. 6 and RGK1 clone no. 10 cells in the presence of 0.01% (v/v) DMSO for 2      |    |
| and 24 hours.                                                                    | 35 |
| 11. Confocal micrographs of RGM1 and Mn-SOD transfected RGM1 clone no. 6         |    |
| cells in the presence of indicated concentration of quercetin for 2 and 24 hours | 36 |
|                                                                                  | 30 |
| 12. Confocal micrographs of RGK1 and Mn-SOD transfected RGK1 clone no. 6         |    |
| cells in the presence of indicated concentration of quercetin for 2 and 24 hours | 37 |
| 13. The 4-HNE protein adduct contents without (a, b) and with indicated the      |    |
| concentration of quercetin (c, d) determined at 2 and 24 hours of RGM1, Mn-      |    |
| SOD transfected RGM1, RGK1 and Mn-SOD transfected RGK1 cells.                    | 38 |
| 14. The effects of quercetin on the specific growth rate in RGM1, Mn-SOD         |    |
| transfected RGM1 clone no. 6, RGK1 and Mn-SOD transfected RGK1 clone             |    |
| no. 10 cells.                                                                    | 39 |
| 15. Light micrographs of RGM1 and RGK1 cells without (i, iii) and treated with   |    |
| quercetin 200 $\mu M$ (ii, iv). The arrows show vacuole-like structures in the   |    |
| Cytoplasm. by Chiang Mai University                                              | 40 |
| 16. Characterization of autophagic cells by immunofluorescence technique,        |    |
| using goat anti-MAP-LC3 IgG as primary antibody and Alexa Fluor 488              |    |
| donkey anti goat IgG as secondary antibody. Confocal micrographs of RGM1         |    |
| and RGK1 without (i, iii) and treated with quercetin 200 μM (ii, iv)             | 42 |

17. Determination of autophagic cells by using goat anti-MAP-LC3 IgG as primary antibody and Alexa Fluor 488 donkey anti goat IgG as secondary antibody. Confocal micrographs of Mn-SOD transfected RGM1 and Mn-SOD transfected RGK1 cells without (i iii) and treated with quercetin 200 μM (ii, iv).

18. The relative MAP-LC3 staining intensity in RGM1, RGK1 and their corresponding Mn SOD transfected cells (a) and the presence of quercetin for 24h (b) using goat anti-MAP-LC3 IgG as primary antibody and Alexa Fluor 488 donkey anti goat IgG as secondary antibody

43

44

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **ABBREVIATIONS**

ROS reactive oxygen species

ROS<sub>i</sub> intracellular reactive oxygen species

ATP adenosine triphosphate

O<sub>2</sub> superoxide anion radicals

OH hydroxyl radicals

H<sub>2</sub>O<sub>2</sub> hydrogen peroxide

ETC electron transport chain

SOD superoxide dismutase

Mn-SOD manganese superoxide dismutase

CuZn-SOD copper-zinc superoxide dismutase

EC-SOD extracellar superoxide dismutase

CAT catalase

AO anti-oxidant

RGM1 rat normal gastric mucosal cell line

RGK1 N-methyl-N'-nitro-N-nitrosoguanidine induced gastric

cancer cell line

MNNG N-methyl-N'-nitro-N-nitrosoguanidine

NBT nitro blue tetrazolium

TEMED N,N,N',N'-Tetramethylethylenediamine

HPF hydroxyphenyl fluorescein

4-HNE 4-hydroxynonenal

MAP-LC3 microtubule-associated protein light chain 3

PBS phosphate-buffered saline

γ specific growth rate

