

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

Copyright[©] by Chiang Mai University All rights reserved

Appendix A: List of the chemicals and materials used in this study

Chemicals/Materials

Source

Acetone Merck, Darmstadt, Germany

Acrylamide Merck, Darmstadt, Germany

Ammonium persulfate Sigma, St. Louis, MO, USA

Amplicillin Sigma, St. Louis, MO, USA

Aprotinin Sigma, St. Louis, MO, USA

Bisacrylamide Sigma, St. Louis, MO, USA

Bovine serum albumin Sigma, St. Louis, MO, USA

Chemilumnescent reagent Pierce, Rockford, IL, USA

Chloroquine diphosphate Sigma, St. Louis, MO, USA

Coomassie brilliant blue R-250 Bio-Rad, Hercules, CA, USA

DEAE-Dextran Sigma, St. Louis, MO, USA

Developer and replenisher Kodak, NY, USA

Dimethyl sulfoxide Sigma, St. Louis, MO, USA

Dulbecco's Modified Eagle Medium Gibco, Grand Island, NY, USA

Ethyl alcohol Merck, Darmstadt, Germany

Ethylenediaminetetraacetic acid Fluka, Buchs, Switzerland

Fetal bovine serum Gibco, Grand Island, NY, USA

Ficoll-Hypaque solution Sigma, St. Louis, MO, USA

FITC-conjugated sheep F(ab')2 anti-mouse Igs Silenus, Boronia, Victoria,

Australia

Gentamicin Russel, London, UK

Heparin Leo, Ballerup, Denmark

Iodoacetamide Sigma, St. Louis, MO, USA Iscove's Modified Dulbecco's Medium Gibco, Grand Island, NY, USA Isopropanol Merck, Darmstadt, Germany 2-mercaptoethanol Merck, Darmstadt, Germany Methanol Merck, Darmstadt, Germany Nitrocellulose membrane PALL, East Hill, NY, USA Nonidet P-40 Pierce, Rockford, IL, USA Paraformaldehyde Fluka, Buchs, Switzerland Potassium chloride Merck, Darmstadt, Germany Potassium dihydrogen phosphate Merck, Darmstadt, Germany Prestained SDS-PAGE standards Fermentas, MA, USA Protein G separose Zymed Laboratories, Inc., CA, USA RPMI Medium 1640 Gibco, Grand Island, NY, USA Skimmed milk Difco laboratories, Detroit, MI, **USA** Sodium azide Merck, Darmstadt, Germany Sodium bicarbonate Merck, Darmstadt, Germany Sodium carbonate Merck, Darmstadt, Germany Sodium chloride Merck, Darmstadt, Germany Sodium dihydrogen phosphate Merck, Darmstadt, Germany Sodium dodecyl sulfate Merck, Darmstadt, Germany Sodium hydrogen carbonate Merck, Darmstadt, Germany

Merck, Darmstadt, Germany

Sodium hydrogen phosphate

Sulfo-NHS-LC-biotin

Sreptavidin-HRP

TEMED

Tris-base

Tween 20

Pierce, Rockford, IL, USA

Zymed, South San Francisco, CA

BioRad Laboratories, Griffin

Sigma, St. Louis, MO, USA

Fluka, Buchs, Switzerland

Appendix B: List of antibodies used in this study

Monoclonal antibody name (specificity)	Isotype
MT4 (anti-CD4)	IgM
MT4/2 (anti-CD4)	IgM
MT4/3 (anti-CD4)	IgG2a
MT4/4 (anti-CD4)	IgM
MT99/3 (anti-CD99)	IgG2a
FE1H10 (un-defined)	IgM
13M-1F (anti-bacteriophage)	IgG2a
Thal N/B (anti-hemoglobin)	IgG1
Hb1a (anti-hemoglobin)	IgM
M6-1E9 (anti-CD147)	IgG2a
OKT-3 (anti-CD3)	IgG1
MT8 (anti-CD8)	IgM

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Appendix C: List of instruments used in this study

Instrument-Model	Source
2-20 μl Autopipette	Bio-rad, USA
20-200 μl Autopipette	Bio-rad, USA
100-1000 μl Autopipette	Bio-rad, USA
40-350 μl multichanel autopipette	Socorex, Switzerland
AKTA® prime	Amersham, USA
Analytical balance	Mettler Toledo, Canada
Autoclave	Huxey, Taiwan
CO ₂ incubator	Thermo electron coporation,
	USA
Eletrophoresis and Electrotransfer unit	Amersham, USA
Flow cytometer-FACSort	Beckton Dickinson, USA
Fluorescent microscope	Olympus, Japan
Inverted microscope	Olympus, Japan
Laminar flow	Nuaire, USA
Light microscope	Olympus, Japan
Microcentrifuge	Sorvall, Germany
pH meter	Precisa, Switzerland
Refrigerated centrifuge	Sorvall, Germany
Rotator 8 1 S 1	Technomara, Switzerland

Appendix D: Reagents and buffers preparation

1. Reagents for cell culture

1.1 Incomplete IMDM medium

IMDM powder	1	pack
NaHCO ₃	3.024	g
ddH_2O	800	ml
Stirred until dissolve		
Gentamycin (40 μg/ml)	1	ml
Dissolved in ddH ₂ 0 and adjusted volume to	1000	ml
Filtrated through 0.2 μm millipore membrane filter		
Added Fungizone (5 mg/ml)	500	μl
Mixed and stored at 4°C		
1.2 Complete IMDM medium		
Incomplete IMDM medium	90	ml
Heat inactivated fetal bovine serum	10	ml
Checked sterility before used		

1.3 Incomplete DMEM medium		
DMEM powder	1	pack
NaHCO ₃	3.7	greity
HEPES	2.603	g
ddH_2O	800	ml e u
Stirred until dissolved		
0.34% 2-ME	1	ml
Dissolved in ddH ₂ 0 and adjusted volume to	1000	ml

Filtered through 0.2 μm millipore membrane filter, stored at 4°C

1.4 Complete DMEM medium

Incomplete DMEM medium	89.5	ml
Fetal bovine serum	10	ml
Pen/Strep	500	μl
Checked sterility before used		
.5 Incomplete RPMI medium		

RPMI powder	1	pack
NaHCO ₃	2	g
HEPES	3.57	g
ddH_2O	800	ml
Stirred until dissolved		
Gentamycin (40 μg/ml)	1	ml
Dissolved in ddH ₂ 0 and adjusted volume to	1000	ml
Filtered through 0.2 µm millipore membrane filter		
Added Fungizone (5 mg/ml)	500	μl

Mixed and stored at 4°C

Incomplete RPMI 1640 medium		90	ml
Fetal bovine serum		10	ml

Checked sterility before used

2. Reagents for DEAE-Dextran transfection

2.1 0.5 mM EDTA-PBS

PBS pH 7.2 100 ml 0.5 M EDTA pH 8.0 100 μl Filtrated through 0.2 µm millipore membrane filter Stored at room temperature 2.2 DEAE-Dextran stock solution (10 mg/ml) DEAE-Dextran (M.W. 500,000) PBS pH 7.2 10 Filtrated through 0.2 µm millipore membrane filter Aliquot to vials and stored at -20°C 2.3 Chloroquine diphosphate stock solution (10 mM) Chloroquine diphosphate 0.103 PBS pH 7.2 20 ml Filtrated through 0.2 µm millipore membrane filter Aliquot to vials and stored at -20°C

2.4 10% DMSO-PBS

PBS pH 7.2

Dimethyl sulfoxide 10 ml

Filtrated through $0.2~\mu m$ millipore membrane filter

Stored at room temperature

3. Reagents for SDS-PAGE

3.1 4X Separating gel buffer (1.5M Tris HCl pH 8.8)

Tris base	18.15	g
Deionized distilled water	80	ml
Adjusted pH to 8.8 by concentrate HCl		
Adjusted final volume to	100	ml
Filtrated through 0.2 μm millipore membrane filter		
Stored at 4°C		
3.2 4X Stacking gel buffer (0.5M Tris HCl pH 6.8)		
Tris base	6.0	g
Deionized distilled water	80	ml
Adjusted pH to 6.8 by concentrate HCl		
Adjusted final volume to	100	ml
Filtrated through 0.2 μm millipore membrane filter		
Stored at 4°C		
3.3 2x non-reducing buffer		
0.5 M Tris HCl pH 6.8	2.5	ml
87% glycerol	2.3	ml
Sodium dodecyl sulfate	0.4	g
Distilled water	5.16	ml
1% Bromphenol blue	40	$V_{\mu l}$ e d
Mixed well, aliquot and stored at -20°C		

3.4 2x reducing buffer

	0.5M Tris HCl pH 6.8	2.5	ml
	87% glycerol	2.3	ml
	Sodium dodecyl sulfate	0.4	g
	Distilled water	4.16	ml
	2-ME	1	ml
	1% Bromphenol blue	40	μl
	Mixed well, aliquot and stored at -20°C		
3.	5 1X Running buffer		
	Tris base	3.028	g
	Glycine	14.413	g
	Sodium dodecyl sulfate	1.0	g
	Distilled water	1000	ml
	Mixed well, prepared before used		
_			

3.6 30% Monomer (30.8% acrylamide, 2.7% bis-acrylamide)

Acrylamide			60	g
Bis-acrylamide			1.6	g
ddH_2O			200	ml
Mixed throughly and filtra	ated through 0.2 µm millip	ore me	embran	e filt

Mixed throughly and filtrated through 0.2 μm millipore membrane filter Kept in dark at 4°C

3.7 Slab gel

		separating	gel	stack	king gel
	12.5%	10%	7.5%	4%	⁄ o
Distilled water	3.2 ml	4 ml	4.85 ml	1.:	5 ml
30% Monomer	4.2 ml	3.3 ml	2.5 ml	332	.5 μ1
4X Separating gel buffer	2.5 ml	2.5 ml	2.5 ml	31	-
4X Stacking gel buffer		-	-	625	5 μ1
10% SDS (in distilled water)	100 μ1	100 μ1	100 μ1	25	μl
10% APS (in distilled water)	50 μl	50 μl	50 μ1	12.5	μ1
TEMED	10 μ1	10 μ1	10 μ1	5	μl
3.8 10% APS					
Ammonium persulfate				0.1	g
Distilled water				i y	ml
Mixed well, aliquot and stored	l at -20°0				
3.9 10% SDS					
Sodium dodecyl sulfate				10	g
Distilled water				100	ml
Mixed well, aliquot and stored	l at -20°C				
3.10 1X Blotting buffer					
Tris-base				1.515	ersity
Glycine			s e	7.205	g e d
Sodium dodecyl sulfate			(0.5	g
Distilled water				350	ml
Mixed well					

Methanol 100 ml

Adjusted final volume to 500 ml

Filtrated through 0.2 µm Millipore membrane filter

Stored at room temperature

3.11 0.025% Coomassie brilliant blue R250

Coomassie brilliant blue R250 0.125 g

Methanol 200 ml

Acetic acid 35 ml

Adjusted volume to 500 ml by ddH₂O

Stored at room temperature

4. Reagents for Immunoprecipitation

4.1 Tris lysis buffer pH 8.2 (100mM NaCl, 50mM Tris-base, 2 mM EDTA,

0.02% NaN3)

Tris base 3.03 g

NaCl 2.922 g

EDTA (M.W. 292.25) 0.292 g

 NaN_3 0.1 g

Distilled water 200 ml

Adjusted pH to 8.2 by 0.1M NaOH

Adjusted final volume to 500 ml, stored at room temperature

4.2 Lysis buffer

Phenylmethylsulfonyl fluoride (PMSF)

100 µl

(100 mM in acetone)

Iodoacetamide (0.5M in distilled water)	100	μl
Aprotinin (1 mg/ml in PBS)	100	μl
10% NP-40	1	ml
Tris-lysis buffer pH 8.2	8.7	ml
Pepstatin A	10	μl
Mixed well, aliquot to vial and stored at -20°C		
4.3 1 mM Glycine in PBS		
Glycine	0.0375	5 g
PBS pH 7.2	500	ml
Stored at 4°C		
4.4 5 mM Biotin in PBS		
Sulfo-NHS-LC-biotin	0.0027	78 g
PBS pH 7.2	1	ml
Freshly prepared		

5. Reagents for indirect immunofluorescent staining

5.1 1X Phosphate buffer saline (PBS)

NaCl		8	g
KCl by Chiang Ma		0.2	g
Na ₂ HPO ₄		1.15	g
KH ₂ PO ₄		0.2	g
Distilled water		900	ml
Adjusted pH to 7.2 by 5N NaOH			
Adjusted volume to 1000 ml, stored at room temp	erature		

5.2 1%BSA-0.02%NaN3 in PBS

Bovine serum albumin fraction V	10	g
PBS pH 7.2	1000	ml
10% NaN ₃ in PBS	2000	μl
Mixed well until BSA completely dissolved, stored at 4°C	C	
5.3 1%Para-formaldehyde in PBS		
Para-formaldehyde	5	g
PBS pH 7.2	500	ml
Heat at 56°C until dissolved		
Filtrated through 0.2 μm millipore membrane filter, store	ed at 4°C	
5.4 10X Sheath Fluid		
NaCl	160	g
KCI	4	g
Na ₂ HPO ₄	23	g
KH ₂ PO ₄	4	g
Sodium azide (NaN ₃)	20	g
Distilled water	1800	ml
Adjusted pH to 7.2 by 5N NaOH		
Filtrated through 0.2 μm millipore membrane filter		
Adjusted volume to	2000	ml
Stored at room temperature		
5.5 10%NaN ₃ -PBS		
NaN_3	10	g
1XPBS	100	ml

5.6 Red blood cells lysis buffer

1XPBS	2665	μl
Diethylene glycol	300	μl
37% formaldehyde	135	μl

6. Reagents for IgM purification

6.1 Binding buffer (20 mM sodium phosphate, 0.8 M (NH₄) ₂SO₄, pH 7.5)

1 M Na₂HPO₄ 5.8 ml 1 M NaH₂PO₄ 4.2 ml $(NH_4)_2SO_4$ 52.856 g ddH_2O 400 ml

Adjusted the pH to 7.5 with 5 N NaOH

Adjusted the volume to 500 ml with ddH₂O

Mixed thoroughly and filtrated through 0.2 µm millipore membrane filter

Kept at 4°C, degas for 30 min before used

6.2 4X Binding buffer (100 ml) for dilute ascitic fluid

1 M Na₂HPO₄ 1 M NaH₂PO₄ $(NH_4)_2SO_4$ ddH_2O

4.6

ml

Adjusted the pH to 7.5 with 5 N NaOH

Adjusted the volume to 100 ml with ddH₂O

Mixed thoroughly and filtrated through 0.2 µm millipore membrane filter

Kept at 4°C, degas for 30 min before used

6.3 Eluting buffer (20 mM sodium phosphate pH 7.5)

Adjusted the pH to 7.5 with 5 N NaOH

Adjusted the volume to 1000 ml with ddH₂O

Mixed thoroughly and filtrated through $0.2 \mu m$ millipore membrane filter

Kept at 4°C, degas for 30 min before used

6.4 Regeneration buffer

Adjusted the pH to 7.5 with 5 N NaOH

Adjusted the volume to 500 ml with ddH₂O

Mixed thoroughly and filtrated through 0.2 µm millipore membrane filter

Kept at 4°C, degas for 30 min before used

7. Reagents for IgG purification

7.1 Binding buffer (20 mM sodium phosphate buffer, pH 7.0)

Adjusted the pH to 7.0 with 5 N NaOH

Adjusted the volume to 1000 ml with ddH₂O

Mixed thoroughly and filtrated through $0.2~\mu m$ millipore membrane filter

Kept at 4°C, degas for 30 min before used

7.2 Eluting buffer (0.1 M Glycine-HCl, pH 2.7)

Glycine 3.753 g

 ddH_2O 350 ml

Adjusted the pH to 2.7 with conc.HCl

Adjusted the volume to 500 ml with ddH₂O

Mixed thoroughly and filtrated through 0. 2 µm millipore membrane filter

Kept at 4°C, degas for 30 min before used

7.3 Neutralizing buffer (1 M Tris-HCl, pH 9.0)

Tris base 12.114 g

 ddH_2O 60 ml

Adjusted the pH to 9.0 with conc. NaOH

Adjusted the volume to 100 ml with ddH₂O

Mixed thoroughly and filtrated through 0.2 µm millipore membrane filter

Kept at 4°C, degas for 30 min before used

8. Reagent for cell lysate preparation

8.1 0.5M Iodoacetamide (2 ml)

Iodoacetamide (FW185 (C₂H₄INO))

 $0.185 \, \mathrm{g}$

 ddH_2O

2 ml

Aliquot 100 µl/vial, stored at -20°C

8.2 Phenylmethyl-sulfonylfluoride (PMSF) 2 ml

PMSF (FW174.5 (C₂H₇FO₂S) 0.03484 g

Acetone 2 ml

Aliquot 100 μl/vial, stored at -20°C

8.3 Aprotinin 1 mg/ml

Reconstitute aprotinin (lyophilized form) with ddH₂O 5 ml

Aliquot 100 μl/vial, stored at -20°C

8.4 2mM Pepstatin A in DMSO

Pepstatin A (M.W. 685.9) 0.0014 g

DMSO 1 ml

Mixed well, aliquot 10 μl/vial, stored at -20°C

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Name Miss Supaporn Khamchun

Date of birth July 17, 1983

Academic degree 2002, Certificate of Mathayom VI from

Srisamrongchanuphatham School,

Sukhothai, Thailand.

2007, B.S. (Medical Technology), Faculty of

Allied Health Sciences, Naresuan University,

Pitsanulok, Thailand

Presentation

Supaporn Khamchun and Watchara Kasinrerk. Different epitope on CD4 molecule expressed on lymphocytes and monocytes indicating by a specific monoclonal antibody. The 1st CMU graduate Research Conference, Chiang Mai University. Chiang Mai, Thailand. November 2009.