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CHAPTER II 
 

BACKGROUND 
  
 

 
2.1 MR PHYSICS 

 
 
2.1.1 Magnetized Nuclear Spin Systems 
    
          The NMR phenomenon is base on chemistry and biophysical of subatomic level 

of the nuclei that has a basic physical property, called spin. The unpaired nuclear 

particles that have odd atomic weights and/or odd atomic numbers, such as the nucleus 

of the hydrogen atom (which has one proton), possess an angular momentum J
v

, have 

spin or spin angular momentum (which from spin +mass). Another property is 

magnetic moment which is the magnetic field around the spinning charges. The two 

important reasons generating the magnetic field of nuclei are: 1) electrical charges, and 

2) nonzero spin angular momentum. The spinning charge creates a magnetic field 

around it, which is analogous to a tiny bar magnet, as shown in figure 2.1, which is 

represented by a vector quantityμv  that is called the nuclear magnetic dipole moment 

or magnetic moment (which from spin+charge). 

 

 

 

 

 

Figure 2.1 Nonzero spin and magnetic moment are regarded as tiny bar magnet 

 The relationship of spin angular momentum and magnetic moment is  
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                                                       J
vv γμ =                                                               (2.1) 

Where γ  is a physical constant known as the gyromagnetic ratio or magnetogyric 

ratio. The magnitude of  μ   is                          

                                                  )1( += IIhγμ                                                   (2.2)    

 Where I is the nuclear spin quantum number that takes integer or half-integer or zero 

values such that I = 0, 1/2, 1, 3/2, 2 ... and  h  is Planck’s constant 

( sec.106.6 34 jule−× ) over the constant π2 . The values of I following the three simples 

rules[11]: 

1) Nuclei with an odd mass number have half-integral spin. 

2) Nuclei with an even mass number and an even charge number (depend on 

difference of proton and neutrons) have zero spin. 

3)  Nuclei with an even mass number but an odd charge number have integral 

spin. 

         The magnitude of magnetic moment is certain under any condition (with or 

without an external magnetic field), but its direction is completely random in without 

external magnetic field due to thermal random motion. When placed magnetic moment 

of spin 

system in a strong external magnetic field of strength 0B  that applied in the z-direction 

of  

laboratory frame or kBB
vv

0=  . By quantum theory, the magnetic moment vector in  

Z-component of the μv  is  

                                                     hmIz γμ =v
                                                     (2.3) 
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Where Im  is called the magnetic quantum number, that takes the following set of 

(2I+1) values: IIImI ,...,1, +−−=  that corresponds to possible orientations for 

magnetic moment (μv ) with respect to the direction of the external field. The angle 

between μv and 0B  can be calculated by  

                                                   
)1(

cos
+

==
II

mIZ

μ
μ

θ                                      (2.4) 

For a half-integral spin (such as hydrogen atom) system can be calculated based on 

Eqs.(2.4) is                                          

                          ( ) °− ±=×±=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

= 74.541809553.0
)12/1(2/1

2/12/1cos 1

π
θ or        (2.5)   

   as shown in figure 2.2  

 

                                                                   

 

 

 

                          

                 

Figure 2.2 Precession of two opposing directions of nuclear spin about an external 
magnetic field 

 
The transverse component or xyμv  that remains random distributed over [ )π2,0  and its 

magnitude is  

                            
2

)1( 222 hmIIh Izxy
γγμμμ =−+=−=v                                   (2.6)  
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The classical mechanics:  

        By assuming that each μv  without mutual interactions, the torque or turning force 

tries to align μv  with 0B
v

  but nucleus has an angular momentum so it does not simply 

to align μv  with 0B
v

. For the conservation of angular momentum, torque is equal to the 

rate of change of its angular momentum, hence 

                          kB
dt
d

dt
Jd vv

vv

0
1

×== μμ
γ

                                                                   (2.7) 

then                            kB
dt
d vv
v

0γμμ
×=                                                                          (2.8) 

Eqs.(2.8) can be written as              )(
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Decoupling after 2nd  derivatives with respect to time, then 
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00
0
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Likewise, y direction becomes 

                                         y
y

dt
d

μω
μ 2

02

2

−=                                                                (2.12) 

These decoupled 2nd order differential equations and the solutions, for the initial 

conditions to )0(),0( yx μμ and )0(zμ  are: 
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Solved                                y
y

y dt
d
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μ

μω ′′==− 2
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For harmonic differential equation we can use guess solution, that is 

                            if  mtmtmt emmee 2,' =′′=∴= μμμ  

                                             02
0

2 =+ωm  

                                               0ωim =  

that is the complex root, the solution is in the form of  

))(sin())(cos()( timagBtimagAe treal + ; 

then,  
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The complex notation of isolated spins is 
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                                                                  (2.14) 
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From equation (2.14), on the laboratory frame, we can see μv  when it is placed in an 

external magnetic field, which precession about the 0B  field: called Nuclear 

precession; and the transverse component changes to a given time, however the 

vertical or longitudinal component does not changes, as illustrated in figure 2.3    

                          

 

 

 

 

 

 

 

 

 

Figure 2.3 Precession of spin up direction of nuclear spin about an external magnetic 

field at a given time (t) 

For the transverse vector that has changes in a given time was opposite direction of the 

direction of spin, which is - 0ω  or the left hand rule. The rotations in 3D space are 

specified by rotation about z-axis and rotation angle )( 0tω  that for nuclear precession 

and right hand rule for spin cause of positive charge and the modulus of frequency 

given by  

                                                          0Bγω =    rad/sec                                
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and the frequency is                               02
Bf

π
γ

=       Hz.                                (2.15) 

         2.1.2 Bulk Magnetization 

          In MRI, it is convenient to consider the local magnetic dipole moment per unit 

volume, or the magnetization is  

                                                          ∑
=

=
N

i
iM

1
μ                                                    (2.16) 

 Where iμ  is the magnetic moment of the i-th nuclear spins and N is the total number 

of spins. With an assumption of homogeneous sample and uniform field, when 

external magnetic field is applied, there is a torque to M by 0B  resulting in nuclear 

precession at the Larmor frequency as in Eqs.2.8 which is 

                                        kBM
dt
Md vv
v

0γ×=                                                               (2.17) 

According to the Eqs2.9-2.14, when magnetization vector precesses (nutate)  about z 

axis, the direction of applied field at an angular frequency of  0ω  in a matrix form is  
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The cross-coupling of the  xM  and yM   components leads to a solution of [12] 
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, where   0
zM  = Net magnetizations at t=0  and 0ω = 0Bγ  = Larmor Frequency             
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         2.1.3 The Bloch Equation and Relaxation Time 

           Eqs (2.14) has been applied in magnetic dipole moment even in microscopic 

viewpoint. If the term containing T1 and T2 are included, the Bloch equation written in 

general form becomes 

                                  
1

0

2

)(
T

kMM
T

jMiM
BM

dt
Md ZZYx

vvvv
vv

v
−

−
+

−×= γ                        (2.20) 

Where 0
ZM is the thermal equilibrium value of magnetization in the presence of only 

B0. 

T1 and T2 are time constants of the relaxation process of a spin system after it has been 

disturbed from thermal equilibrium. In the rotating frame, the general Bloch equation 

can be expressed as  
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γ            (2.21) 

Where 
γ
ωvvv

+= roteff BB , if  kBBrot

vv
0=  the magnetization rotM

v
    appears to be a 

stationary in the rotating frame. 

The Matrix from of Bloch equation is  
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         hence, the solution is 
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The exponential term represents the decay of precessing magnetization in the 

transverse (x,y) plane with a time constant T2. Simultaneously, the longitudinal 

magnetization returns to equilibrium position along the longitudinal axis (z) at a rate 

determined by a time constant T1. 

The transverse magnetization, xyM  can be decomposed into 2 components (Real and 

imaginary parts) as in Eqs. 2.24 

                                                        yxxy iMMM +=                                               (2.24) 

The Bloch equation for this case is now written as  

                xy
yxxy Mi

Tdt
dM

i
dt

dM
dt

dM
)1( 0

2

ω+−=+=                                                  (2.25) 

and                          
1

0 )(
T

MM
dt

dM zz −
−=                                                                 (2.26) 

this is the first-order differential equation with a compact solution is 

                                        tiTt
xyxy eeMtM 02/)0()( ω−−=                                               (2.27) 

representing decay of a complex exponential of frequency 0ω . The original 

component’ values related to xyM  at a given time are: 

                                       { } { }Re ( ) , Im ( )xy x xy yM t M M t M= =                          (2.28) 
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2.2 THE RADIOFREQUENCY EXCITATION 

 

 2.2.1 Radiofrequency Magnetic Field 

         After the external magnetic field 0B
v

 is applied, the bulk magnetization M will 

align to the same direction of 0B
v

. There is no transverse magnetization in this 

equilibrium state because the phases of individual magnetic moments in this bulk 

magnetization are distributed random and cancel each other. The excitation process is 

the way to establish the phase coherences of these magnetic moments so that a 

transverse magnetization is generated. In order to achieve the coherences of phase, an 

external force must be applied to the spin system. This external force provides an 

oscillating magnetic field or B1 field which is perpendicular to the main magnetic field 

and rotates at the same angular frequency as the Larmor frequency to facilitate energy 

exchange. Reiteratively, RF magnetic pulse B1 tuned to the resonance frequency of the 

spins is applied in the transverse plane to excite these spins out of equilibrium.   

The term B1 pulses or RF pulse is synonym of the B1 field generation, so called 

because the frequency is normally between 1MHz and 500 MHz, corresponding to the 

radio waves. 

In fact, many RF pulses are named based on the characteristics of this envelope 

function. For example; the widely used Rectangular function and Sinc pulse see figure 

2.4 
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Figure 2.4(a) the amplitude modulated RF in sinc pulse (shapes) and (b) rectangular 

pulse (turn on and off) 
 

Energy imparted from B1 generates a torque to rotate the magnetization vectors as a 

prescribed angle depending on the strength of B1 and its durations. The strength of B1 

is typically small amount fraction of a Gauss ( 410− Tesla); which is weakest field using 

in MRI (typical about 1/4.257  Gauss)[13], and duration is usually in a few 

milliseconds.  

A typical RF pulse can be described by an amplitude modulated sinusoidal function: 

                                      )cos()(2)( 11 ϕω += ttBtB rf
e                                             (2.29) 

where )(1 tBe  is an envelope function that modulates the amplitude, rfω is the carrier 

frequency, and ϕ   is the initial phase angle. If the ϕ   is constant, it has no effect on 

excitation. It can be assumed as zero[11]. The complex notation can be decomposed 

into two rotating components: 

                                       
tietie rfrf etBetBtB ωω −+= )()()( 111                              (2.30) 

a b 
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The one rotating counterclockwise is called )(1 tB−  has negligible effect on the 

magnetized spin system compared to the clockwise component which is called )(1 tB+ , 

and then the effective )(1 tB  field is tie rfeB ω−
1 which can be written in matrix form as: 
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⎦
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                                    (2.31) 

When B1 is turn on, the magnetic field will be, 

                          kB
j
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−= ωω                                            (2.32) 

From Eqs.2.17 the magnetization is 

                   [ ]{ }kBjtittBMkBM
dt
Md

rfrf

vvvvvv
v
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the Eqs.2.24 in a matrix form  is 
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                            (2.34) 

2.2.2 Rotating Frame  

         It is easier to consider the time dependence of magnetization in the rotating frame 

about z-axis which is the Larmor frequency in clockwise direction of the B1 excitation 

field. In the rotating frame with the Larmor frequency, the precession of the spins is 

observed as stationary.  Mathematically, the rotating frame can be express by a 

rotational matrix 
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Rotating magnetization and B1 are defined as 

                                    
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

′

′

′

′

′

′

z

y

x

rot

z

y

x

rot

B
B
B

B
M
M
M
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The RF field B1 is only applied in the transverse plane at the Larmor frequency. In the 

rotating frame, the B1 field generally applies along a fixed x′ axis and can be written in 

2D matrix form as:  

][
0

)0cos(
)sin(

cos
)cos()sin(
)sin()cos(

1
1

1

1

00

00
1)(2,1 0

iB
B

tB
tB

tt
tt

BRB e
e

rf
e

rf
e

tdrot ′=⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡ −
==

ω
ω

ωω
ωω

ω  (2.37) 

The effective magnetic field Beff becomes  

                                      iBkBB erf
eff ′+′−= 10 )(

γ
ω

                                                   (2.38) 

At the on-resonance excitation condition 0ωω =rf then 

                                         iBB e
eff ′= 1                                                                        (2.39) 

The only magnetic field observed in the rotating frame is eB1 applied along the x prime 

axis. Practically, the high frequency part observed as a vector in the rotating frame is 

demodulated and the RF oscillation is transformed to the time-dependent 

envelope )(1 tBe . The magnetization M will be tipped away from the z prime-axis to the 

y-prime axis. This is the reason of smaller B1 field can tip the magnetization away 

from the direction of the much stronger main magnetic field. The angular frequency of 

this rotation resulted by the RF pulse will be; 

                                               eB11 γω =                                                                     (2.40) 

For the soft or tailored RF pulse, the flip angle is the time integral of the angular 

frequency over the pulse duration T; 
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Ignoring the relaxation effects of Bloch equation, it becomes 
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The solution of this equation will be: 

Solved: By the same way of find the solution Eqs.2.13  
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 at t=0,  0)0( zz MM ′= that is only B = Mz(0);                                                              

 then the solution is,                        



 18

                  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∫

∫
′

′

′

)cos(
)sin(

0

))(cos(

))(sin(

0

)(
)(
)(

0

0

0
1

0

0
1

0

α
α

γ

γ

z

z

t
e

z

t
e

z

z

y

x

M
M

dttBM

dttBM
tM
tM
tM

                                   (2.43)                    

, where α is the flip angle.  

Apparently the bulk magnetization vector precesses about the x′ -axis with angular 

velocity as shown on figure 2.5 

                                                        11 B
vv γω −=                                                           (2.44) 

 The precession of M about the B1 field is called forced precession [11].  

 

 

                                                

 

 

Figure 2.5 the Bulk magnetization vector in the presence of a rotating RF field in the 
RF rotating frame 

 
From equation 2.41, if B1 is turned on for a period of tp, the tip (flip or rotation) angle 

θ  in radians is  

                                     dttB
pt

)(
0

1∫= γθ                 for general time-varying B1(t)      (2.45) 

                                    ptB1γθ =                         for constant B1 (or hard pulse)      (2.46) 

          2.2.3 Off-resonance condition: 

           There is no perfectly uniform B0 within a given volume. This may be caused by 

hardware imperfections, chemical shifts, effect of the RF pulse, subject susceptibility 
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induced field variations and eddy current. Therefore, the main field can be considered 

as a space variant function. The difference of local main field to the RF tuning Larmor 

frequency is called the off-resonance, ( )rωΔ  

                                              0)()( ωωω −=Δ rr                                                      (2.47) 

In the presence of off-resonance condition ( rfωω ≠0 ), the effective magnetic field Beff 

will have an additional term along the z axis, 

                                      iBkiBkrB rf
eff ′+′

Δ
=′+′−= 11))((

γ
ω

γ
ω

γ
ω                         (2.48) 

The Bloch equation in the rotating frame with the typical B1 pointing along the x′  axis 

and residual component γω /Δ  pointing along the z′ -axis ignoring relaxation effects 

becomes  
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In general, there is no close-form solution for this equation. For a constant RF field or 

hard pulse, the solution of Bloch equation indeed exists, which is given by  
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Where α is the tip angle about the axis of effB ,1 , then the transverse magnetization after 

excitation is not along the y′ axis as in the case of on-resonance excitation but has a 

phase shift from y′ axis. This phase shift can be problematic for some MRI 

applications. In addition, the magnitude of the transverse magnetization is given by  

                             θααθ 2220 cos)cos1(sinsin −+=′′ Zyx MM                            (2.51) 
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That decreases as the frequency offset increases (or '
2T ) 

  

2.3 DATA ACQUISITION 

 

2.3.1 Signal detection and reciprocity law 
 
        According to the time–varying magnetic fields and Faraday’s Law, if a source is 

producing a magnetic field, then we can measure how much flux it will generate 

through a coil by measuring the induced voltage in a coil placed perpendicular to the 

direction of this magnetic field. The induced voltage or (electromotive forces, emf) is 

given by  

                 
t
ttV

∂
Φ∂

−=
)()(                                                       (2.51)  

Where Φ is the magnetic flux. In MRI, the measured voltages or signals from the coil 

determine the magnetic fields (in our case, spin distribution). According to the 

principle of reciprocity, if there are two identical coils, A and B, if coil A can produce 

flux through coil B, then coil B can also produce an identical amount of flux through 

coil A [14] and the flux,Φ   is defined as 

                                                           ∫=Φ danBt ..)( v                                             (2.52) 

Where B  is the magnetic field perpendicular to the coil, and da is the surface area of 

 the coil. In MRI, when the same RF coil is used for excitation and reception, the flux 

detected by the receiving coil can be determined through the principle of reciprocity 

[14] as: 

                                               drtrMrBt r ),(.)()( ∫=Φ
v

                                           (2.53) 
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Substituting this into equation 2.50 

                 drtrMrB
t

tV r ),(.)()( ∫∂
∂

−=
v

            (2.54) 

 
Where rB

v
 is the laboratory frame magnetic field at location r per unit of direct current 

flowing in the receiver coil and M is the magnetization that produces the magnetic flux 

through the coil. Since the z component of the magnetization, M is a slowly varying 

function compared to the free precession of the Mx and My component, the Mz 

component can be ignored. That is why all people often refer the MR signal as the 

transverse magnetization Mxy. Therefore, the MR signals after the demodulation of the 

high frequency term, the signal equation in rotating frame [11]. 

          dreerMrBets trirTt
xyxy

i ∫ Δ−−= )()(/*2/
0 .)0,().()( 2 ωπω

v
             (2.55)  

 
Where *

xyB is the complex conjugate of the transverse received magnetic field xyB , or 

the “coil sensitivity”. The dependence of signal on the ‘transmit coil sensitivity’ is 

implicitly included in the magnetization M. Ignoring the T2
* effect, the signal 

amplitude is proportional to the Larmor frequency, the coil sensitivity, the transverse 

magnetization, and the sample volume. 

                                        sxyxy VBMS *
0ω∝                                                             (2.56) 

The Larmor frequency and the transverse magnetization are linearly related to the main 

magnetic field. That is why the high field MRI has the advantage on the image SNR. 

2.3.2 Free Induction Decay (FID) 

           The time signal from a nuclear spin system is collected right after a single RF is 

applied. No gradient fields are involved here. The signal is call Free Induction Decay 

(FID). “Free” refers to the signal generated by the free precession of the bulk 
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magnetization vector about the main magnetic field. “Induction ” indicates that the 

signal is produced base on electromagnetic induction[11].  “Decay” reflects the 

characteristic decrease with time of signal amplitude that loss of phase between spins 

and loss of energy from spins to surroundings. Mathematically, if the field 

inhomogeniety has Lorentzian distribution, the FID signal becomes 

                           tiTttiTttB eAeeeAetS 0
*
2020 //)( ωωγ −−−−Δ− ==                              (2.57)   

Where                     

                           0
2

*
2

11 B
TT

Δ+= γ                                                                              (2.58) 

Eqs.2.58 is valid for Lorentzian spectral density function, the envelope of FID signal 

will be exponential function, and T2
* should be interpreted as the effective time 

constant of an approximating exponential, and A, magnitude of the signal from 

Eqs.2.57, is dependent on a number of parameter such as flip angle, the number of 

spins in sample and the magnetic field strength [10]. FID time signal depends on field 

inhomogeneity or T2
* decay   

2.3.4 Frequency encoding 

           After an excitation, the FID signal is localized by applying a gradient on one 

direction that is placed in an assuming homogeneous B0 field, the Larmor frequency 

(precessions) will be linearly changed depending on each position, and the precession 

at position (x) is  

                                             )()( 0 xGBx x+= γω                                                      (2.59) 

Consequently, the FID signal generated locally from spins in an infinitesimal interval 

dx 
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at point x with negligible relaxation and some scaling e.g. flip angle, main magnetic 

field strength  is 

 
tixtGitxGBi
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=== ∫∫∫                 (2.60) 

In practice, the phase sensitive detection (PSD) or doubly balance mixer or quadrature 

detector, the method to remove high-frequency from low-frequency band by 

multiplying signal with reference sinusoidal signal (generated by Frequency 

synthesizer) and then low-pass-filtering to remove the high-frequency component,  has 

been used [15, 16]. 

 For ambiguity of signal problem, the reference signal which has a 90 degree phase 

shift relative to the first one has been applied. Figure 2.6 show a diagram of phase 

sensitive detection. 

 

 
          
 
                                                                                                              

 

 

 

 

Consider the idea of high frequency demodulation, an example of input signal as a 

sine function oscillating with (ω  + ωΔ ) is multiplied by 2 reference functions, )sin( tω  

Figure 2.6 shows 
diagram of PSD 
that has two 
detector, amplified 
low-passed filter,   
using for  remove   
high frequency   
component.    
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and )cos( tω and then applies the trigonometric properties, obtaining 2 new functions as 

in Eq2.61   

                       tttt )2cos()cos(
2
1)sin()sin( ωωωωωω Δ+−Δ=×Δ+            

and                tttt )2sin()sin(
2
1)cos()sin( ωωωωωω Δ++Δ=×Δ+                        (2.61) 

 The high frequency terms, cos(2 )tω ω+Δ and sin(2 )tω ω+Δ  from Eq 2.61 are 

ultimately filtered out by a low-pass filter [16]. After the carrier frequency signal is 

removed, the general form of FID signal with the gradient received frequency-encoded 

is  

                                            ∫ −=
object

rtGi drerts feγρ )()(                                                  (2.62) 

where Gfe is the frequency-encoding gradient for three planes or Gfe = ( Gx, Gy, Gz ).  

Generally, the frequency encoding gradient can be applied only one direction. To 

perform a multidimensional image, we can either repeat the frequency encoding along 

other directions or use phase encoding method that will be discussed in next section. 

2.3.5 Phase encoding  

           The phase encoding method encodes the spatial location with different initial 

phases by applying gradient field in any desired directions. The gradient is turned on 

only for a short period of time. The signal after the time Tpe with signal demodulation 

will be: 

                                   ∫
∞

∞−

−∝ drerMts peperTGiγ)()(                                           (2.63) 

The phase term is 
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                                            peperTGr γφ −=)(                                                           (2.64) 

Combining the phase and frequency encoding, we can conveniently encode a 2D or 3D 

space in any arbitrary coordinates. 

 

2.4 RF PULSE DESIGN 

 

2.4.1 The Small Tip Angle Approximation 

        2.4.1.1 Fourier relation of RF and Mxy 

        The small-tip angle approximation uses to analyze selective excitation under 

some conditions.  Assuming that the tip angle is small so that 0zdM
dt

≈ and the 

relaxation T1, T2 will be neglected due to short excitation period compare with the 

relaxation time.  Then the Bloch equation in the rotating frame becomes 
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Where r is the position vector (x y z) and G = the gradient vector (Gx Gy Gz), the 

equation 2.65 becomes  
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Define complex notation  
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Combine the two equations into single equation 
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This is 1st order differential equation, and the solution will be 
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Where T is the ending time point of the RF pulse. This equation shows that the 

transverse magnetization is the Fourier Transform of the applied RF pulse and gradient 

fields which are in general time-varying. 

       2.4.1.2 k-space interpretation   

        k-space is defined as  

                              ∫ ∫=−=
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This equation gives the definition of the excitation k-space which is the integral over 

the remaining gradient. The transverse magnetization of excitation k-space will be: 

                           ∫
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=
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We can write the exponential factor as an integral of a three-dimension delta function. 
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 The bracket is represented by P(k): 
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Then P(k) is the Fourier transform (FT) of the magnetization as from Eq.(2.72). If the 

trajectory in k-space is non singularity, the equation can be rewritten in the form of a 

unit delta function  
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 Let W(k) be the spatial weighting function, then 
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If W(k) is assumed to be a constant, 

                                            P(k)=W(k)S(k)                                                            (2.76) 

Where  
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The transverse magnetization is the Fourier transform of a spatial frequency 

weighting function W(k) multiplied by spatial frequency sampling function S(k). The 

equation 2.77 implies that we can predict slice profile or behavior of transverse 

magnetization by Fourier transform of W(k)S(k)  and the W(k) can be solved by FT of 

w(r) or desired shape to be excited.    

 

                                                

2.4.2 One-dimensional Selective RF pulse design 

         2.4.2.1 Simple 1D Selective RF excitation  

         An example of RF pulse with the nice transform is window-sinc which removes 

the ripple from truncated Sinc by multiplying Sinc function with a smooth function 

such as Hahning or Hamming window. Simultaneously with the RF pulse, the slice 

select   gradient, Gz, in trapezoidal shape with a half area refocusing lobe is applied as 

shown in Figure 2. 7 the Sinc pulses apodized by smooth function windows are 

described as: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ +−=

0
)/(2

)2sin(
)2cos()1()(1 TtN

T
tN

T
tAtB

π

π
παα             

Otherwise

TtT 2/2/; ≤≤−
               (2.78)              

Where the parameter α =0.5 yields the Hahning window, and α = 0.46 for the 

Hamming window, N is the number of zero crossing point and the amplitude A can be 

varied to change the tip angle of the pulse. The Hahning window ensures a continuous 

first derivative where as Hamming window reduces the first derivative at the margins 

of the symmetric Sinc pulse by factor of 12.5 [16]. 
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Figure 2.7 (top) plot the RF hamming-sinc pulse (flip angle 30 
degree) ,(middle)gradient select slice in z direction and (bottom) show the k-space  
 
From figure 2.7, we used the typical Fourier transform designs of hamming–sinc pulse, 

calculating the RF amplitude required for any flip angle from the formula: 
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For example, the flip angle of 30 degree, we can calculate the bandwidth that is time-

bandwidth products of RF pulse which is equal to two times the number of crossing 

points.  Time is the pulse duration or the sampling points multiplied by dwell time, if 

the pulse duration = 800 sampling points and typical dwell time is 4 microsecond and 

crossing is 4 points, hence the bandwidth is 

                                    kHzmsBw 5.2)(2.3/)42( =×=  

The gradient strength was applied depending on slice thickness and bandwidth by 
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According to the Bloch simulation, the result of the Bloch simulation and the Fourier 

transform of the RF are represented in figures2.8;   

  

 

 

 

 

 

Figure 2.8 Show the result of the Bloch Simulation from an RF excitation of 

(figure2.7) :(left) 30 degree profile and well refocusing,(right) normalized Fourier 

Transform of the B1(t) 

 

Note: My is imaginary part but the profile of FT(B1(t)) is real part  from equations 2.26 

2.4.3 Three-Dimensional Tailored RF Pulse Design: Stack spiral  

             The design of three -dimensional Tailored RF excitation are spatially selective 

in all three directions at once that affects a volume of magnetization. It has been used 

in many applications such as correcting for susceptibility artifact and B1 

inhomogeniety [5, 6]. The design base on a 2D spiral trajectory in  kx-ky plane and 

gradient blip along kz such that a cylindrical k-space volume is covered. 

The simple 2D spiral trajectories can be generated from the equation below. 

                              
)/(2

max )/()( TtNieTtktk π=                                                (2.80) 

For spiral outward and constant angular rate, with N = numbers of cycle spiral. T= 

total pulse width in 2D k space trajectories. The pulse excitation resolution ( rΔ  ) and 

excitation FOV are two important parameters need to be chosen in the trajectory 

design. Pulse resolution is determined by maximum of k-space and a number of turns 
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(N) of spiral or how far out of first aliasing side lobe will be is determined by selected 

excitation FOV as shown in figure 2.9 (a)  and (b). The side lobe that from the 

discreteness and limited extent of the trajectory gives rise to periodic side lobe of 

excited magnetization (aliasing) and small oscillation (ripples) throughout the periodic 

interval respectively [13].  

                     

 

 

 

 

 

 

 

Figures 2.9 k-space trajectory design (a) spiral k-space. (b) The impulse respond in 

image space. 

The maximal k-space coverage ( kmax ), the excitation FOV and N cycles of spiral are 

determined by[13]: 
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where tΔ is the scanner gradient interval typically used 4 microseconds. To avoid 

aliasing, the maximal G(t) allowed will be: 

                                      ),2max( maxmax g
tFOV

G
xyΔ

=
γ

π                                          (2.83) 

Where gmax is the scanner maximum gradient limit (typically about 40 mT/m). We 

always want to obtain a minimal length spiral for given hardware constrains. Thus, 

accelerate maximal slew rate at the start of spiral until the maximum amplitude is 

achieved or the kmax is reached. The remaining k-space will be covered by the spiral 

with constant gradient.  

This spiral design algorithm was introduced by Glover (Archimedean spiral)[17].  The 

weighting function (W(k)) for the 2D trajectory can be calculated by the Fourier 

transform of desired weighting in spatial, e.g. Fermi function (w(x,y)) that is 

                                    )),(()( yxwFTkW =                                                     (2.84) 

when    

                              widthrre
rw /)( 01

1)( −+
=                                                 (2.85) 

as shown in Figure 2.10 
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Figure 2.10 Fermi function )(rw  (left) and the k-space weighting ))(( tkW (right) 

From the figure 2.10 we can see Fermi function and the k-space weighting by the 

Fourier transform of w(r) and weighting to the spiral k-space W(k(t)). 

To ease the complicated 3D pulse design, a separable design is applied. With the 

separable design, weighting function is composed of through-plane (P(kz)) and in-

plane  Q(kx-ky)  as in Eq (2.86) 

                              )(),())(( zyx kPkkQtkW =                                                     (2.86) 

An example of P(kz) is a Sinc function and the transverse plane is sampled with spiral 

trajectory obtaining Q(kx, ky) which is the in-plane weighting. The through-plane is 

sampled with blip gradient. The weighting between the through-plane and in-plane is 

shown in figure 2.11 

                       

 

 

 

 

 

 

 

Figure 2.11:  3D TRF pulse design. Diagram of RF magnitude envelope of absolute 
Sinc 

in kz and magnitude in Q(kx-ky) 
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Figure 2.11 shows an explanation of this separable design idea. For the stack spirals 

pulses, Q(kx-ky) determines the shape of sub-pulses, and P(kz) determine the envelope. 

The RF waveform B1(t) is calculated from equation 2.87.    

                          ))((.)()()(1 tkWtGtktB γΔ=                                                   (2.87) 

In this thesis, we adopted the 2D spiral trajectories using analytical algorithm 

developed by Glover[17].The algorithm was developed from the slew rate limited 

algorithm of Duyn and Yang[18].  This algorithm includes a modified slew-rate 

limited case for the trajectory near the origin and switch to amplitude-limited when 

maximum allowed gradient is being reached. The 2D spiral k-space can also be split 

into several interleaves for multi-shot excitation to reduce pulse width. The details will 

be described in chapter 4.      

2.4.4 The Half RF pulse (Half-sinc) 

        In brief, the half-pulse that generally uses for ultrashort TE imaging or short T2 

species has been a topic of recent research [19].  Short T2 components of tissue such 

as tendons, ligaments, cartilage and bone demonstrate loss of signal from component 

of tissues or tissues decay rapidly after excitation before the MR system becomes fully 

operational in receive mode. To minimize T2 decay especially in tissue that has very 

short T2, splitting RF pulse into two shots call Half-pulse excitation provides shorter 

feasible TE. To image short T2 species, sequences employing ultrashort echo time 

(UTE) are required [19]. This section focuses on selective slice excitation using self 

refocused half-sinc RF pulses.  The half-sinc RF excitation pulses are used, limiting 

the echo time to only the hardware switching time [19]. The half-sinc pulse is 

inherently self-refocused and is applied during the rising and falling slopes of the 
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slice-selection gradient [20]. The simple RF waveform and the gradients are shown in 

figures 2.12 

 

 

 

 

  

 
 
 
 
 
 
 
Figure 2.12 (top) The RF wave form which not scale for flip angle (bottom) the slice 
select gradient wave from of 1st excitation (bold line) and 2nd  excitation (dash line). 

 
The half-pulse imaging required fast acquisition such as radial [13] or spiral [19] 

readout. The idea underlying of half-pulse excitation was first proposed by JM Pauly 

[21] for the imaging of very short T2 species. A simple conventional excitation, which 

shows in figure 2.7, consists of a slice selective RF excitation followed by gradient 

refocusing interval. The k-space is traversed from k-space minimum (k-min) to k-

space maximum (k-max) and then returns to origin or zero of k-space. In contrast, the 

proposed half-pulse excitation method eliminates the post-excitation refocusing. The 

half-pulse selective excitation diagram is illustrated in figure 2.12 which consists of 2 

excitations. The first half-excitation played out in the presence of a positive gradient, 

beginning at the k-min an end at k-space origin (self refocusing). For the second half-

excitation, the opposite gradient was applied, which implies a linearity of k-trajectory 
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beginning at k-max and again ending at the origin. Once both pulses have been 

applied, the traversal through excitation k-space is completed as shown in figure 2.13 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.13 Diagrams of half- window Sinc pulse and k-trajectories of two excitations. 

First excitation is solid line and second excitation is dash line. 
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