TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	iv
THAI ABSTRACT	v
LIST OF FIGURES	ix
ABBREVIATIONS	xii
CHAPTER I INTRODUCTION	
1.1 The uses of three-dimensional magnetic resonance imaging (3D MRI)	
and radio frequency (RF) pulse	1
1.2 Problems and potential solutions of three dimensional radio frequency.	2
1.3 Significance of this thesis	3
1.4 Objectives	3
CHAPTER II BACKGROUND	
2.1 MR Physics	
2.1.1 Magnetized Nuclear Spin Systems	sity ₄
2.1.2 Bulk Magnetization	e 10
2.1.3 The Bloch Equation and Relaxation Time	11

vi

0.0	T 1	1. 0		•, ,•
1.1.	Ine	radiofred	mency	excitation
	1110	ruuronee	acticy	encitation

2.2.1 Radiofrequency Magnetic Field	13
2.2.2 Rotating Frame	15
2.2.3 Off-resonance condition	19
2.3 Data acquisition	
2.3.1 Signal detection and reciprocity law	20
2.3.2 Free Induction Decay (FID)	22
2.3.3 Frequency encoding	22
2.3.4 Phase encoding	24
2.4 RF pulse design	
2.4.1 The Small Tip Angle Approximation	25
2.4.2 One-dimensional Selective RF pulse design	28
2.4.3 Three-Dimensional Tailored RF Pulse Design: Stack spiral	30
2.4.4 The Half RF pulse (Half-sinc)	34

ລີບຄື

CHAPTER III REVIEW LITERATURE	
3.1 Existing Methods for Reducing pulse width of 3D RF Pulse	
3.1.1 Multishot 3D Slice-Select Tailored RF Pulses	37
3.1.2 Variable-Density Spiral	
3.1.3 Fast K _z TRF	40
3.1.4 2D spatially selective RF excitation	40

3.2 Proposed Method	
3.2.1 A Design of Multishot Three Dimensional RF pulses (3D RF)	41
3.2.2 Half-pulse design along k_z direction	42
CHAPTER IV MATERIAL AND METHODS	
The hybrid 3D tailored radiofrequency (TRF) pulses construction	45
CHAPTER V RESULTS	49
CHAPTER VI DISCUSSION AND CONCLUSION	55
6.1 LIMITATION	56
6.2 FUTURE WORK	56
REFERENCES	57
APPENDIX	62
CURRICULUM VITAE	65

viii

LIST OF FIGURES

Figure	PAGE
2.1 Nonzero spin and magnetic moment are regarded	as tiny bar magnet 4
2.2 Precession of two opposing directions of nuclear s	pin about an external
magnetic field	6
2.3 Precession of spin up direction of nuclear spin abo	out an external
magnetic field at a given time (t)	9
2.4 (a) the amplitude modulated RF in sinc pulse (shap	pes) and
(b) rectangular pulse (turn on and off)	14
2.5 The Bulk magnetization vector in the presence of	a rotating RF field
in the RF rotating frame	18
2.6 Show diagram of PSD that has two detector, ampl	ified low-passed filter,
using for remove high frequency component.	23
2.7 (top) plot the RF hamming-sinc pulse (flip angle 3	0 degree),
(middle)gradient select slice in z direction and (bo	ottom) show the k-space 29
2.8 Show the result of the Bloch Simulation from an F	RF excitation :
(left) 30 degree profile and well refocusing,(right)	normalized
Fourier Transform of B ₁ (t)	30
2.9 K-space trajectory design (a) spiral k-space.	
(b) The impulse responds in image space.	ai Universit ³¹
2.10 Fermi function $w(r)$ (left) and the k-space weigh	nting $W(k(t))$ (right) 32
2.11 Diagram of RF magnitude envelope of absolute S	Sinc in k _z
and magnitude in $Q(k_x-k_y)$	33
2.12 (top) The RF wave form which not scale for flip	angle
(bottom) the slice select gradient wave from of 1	st excitation (bold line)
and 2^{nd} excitation (dash line).	34

2.1	3 Diagrams of half- window sinc pulse and k-trajectories of two excitations.	
	First excitation is solid line and second excitation is dash line.	35
3.1	Diagrams of the k-space trajectories used for the stack	
	(alternating in-out) spiral of multishot 3D RF pulse designs.	37
3.2	Diagrams of the k-space trajectories used for skip-kz multishot	
	3D RF pulse designs. First shot is bold line and second shot is thin line.	38
3.3	Diagram of constant-density (solid line) and variable density factor 1.9	
	(dash line) spiral k-trajectories.	38
3.4	Show two shots of spiral k-trajectories outward, first shot is dot line	
	and second shot is solid line.	40
3.5	Half-window sinc pulse slice profiles obtained by Bloch equation	
	simulation (top and bottom left) the profiles from two successive	
	excitations with opposite polarity of the slice select.(right) the effective	
	profile of magnitude sum.	43
4.1	Show two shots of "blip" gradient along z-direction (top row) and	
	k_z -traverse direction from k_z -min to origin in first excitation and	
	k _z -max to origin in second excitations(bottom row).	46
4.2	Show one shot of 2D spiral trajectory and its traverse direction (arrow)	48
4.3	Diagrams of one shot from a two-shot hybrid spiral 3D TRF pulse	
	use for small volume excitation. The top row shows real part and	
	imaginary part of RF, the middle row shows the x and y gradients, and	
	the bottom row shows the z gradient.	50
4.4	Mesh plot of numerical simulation (a, left) mesh plot in x-y plane,	
	of the excitation using hybrid pulse and (a, right) conventional pulses.	
	(b, left) Mesh plot in x-z plane of hybrid and	
	(b, right) conventional 3D TRF pulses.	51
4.5	Shows magnitude and phase of the desired selective 3D RF pulses	
	(13.8 ms.), (a), compared with conventional selective 3D RF pulse	
	(20 ms.) (b).	52

x

- 4.6 The Images from the simulation in x-z (a) and x-y plane (b).
- 4.7 Varying excitation FOV in x-y plane, this figure show images from the simulation in x-y (left), x-z planes (middle) and the 1D profile along FOVx (right).. In x-y plane, full excitation FOV the same as FOV of object (a), reduce excitation FOV to ³/₄ (b), reduce excitation FOV to 2/4 (c) and reduce excitation FOV to 1/4 (d).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

53

54

ABBREVIATIONS

CSI	Chemical Shift Imaging
DWI	Diffusion Weighted Images
EPI	Echo Planar Imaging
FID	Free Induction Decay
FOV	Field of View
FT	Fourier Transform
fMRI	Functional Magnetic Resonance Imaging
PPE	Pulse Programming Environment
PSD	Phase Sensitive Detection
MR	Magnetic Resonance
MRI	Magnetic Resonance Imaging
MRS	Magnetic Resonance Spectroscopy
NMR	Nuclear Magnetic Resonance
RF	Radio Frequency
SNR	Signal to Noise Ratio
ТЕ	Echo Time
TRF	Tailored Radiofrequency
UNFOLD	Unaliasing by Fourier-encoding the Overlaps the temporal
	Dimension.
VOI	Volume of Interest