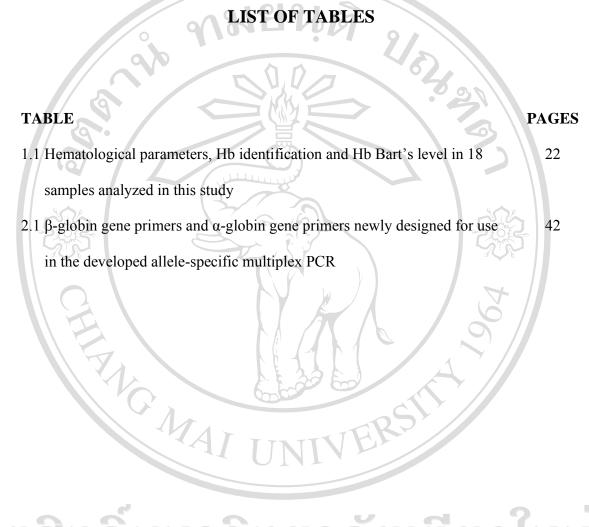


1.1.3.2 Confirmatory method for thalassemia and

hemoglobinopathies	
1.1.4 Silent form of thalassemia	16
1.1.5 Double heterozygous α/β-thalassemia	18
1.2 Literature review	19
1.3 Rationale and hypothesis of the study	19
1.4 Objectives	21
CHAPTER II METERIALS AND METHODS	
2.1 Materials	23
2.1.1 Chemicals and instruments used in this study are	23
indicated in the appendix	
2.1.1 Human DNA and blood samples	23
2.2 Methods	23
2.2.1 Study of molecular background of silent α -thalassemia	23
2.2.1.1 phenol/chloroform DNA preparation	23
2.2.1.2 Chelex [™] direct DNA extraction	25
2.2.1.3 Detection of $XmnI-^{G}\gamma$ polymorphism	26
C C C 2.2.1.4 Detection of α -thalassemia 2 C C C C C	27
Copyright ^C (3.7-kb and 4.2-kb deletions) Mai Univer	sity
2.2.1.5 Detection of α -thalassemia 1 (SEA type)	30
2.2.1.6 Sequencing of α_1 -globin gene and α_2 -globin gene	32
2.2.2 Development of multiplex allele-specific PCR	38

Х

2.2	2.2.1 Design of PCR primers	39
2.2	2.2.2 Optimization of developed	43
	multiplex allele-specific PCR	
2.2	2.2.3 Determination of double heterozugous state using the	49
	developed multiplex allele-specific PCR	
CHAPTER III R	RESULTS	
3.1	1 Study of molecular background of silent α -thalassemia	50
582 3.1	1.1 Detection of $XmnI$ - ^G γ polymorphism	50
3.1	1.2 Detection of α-thalassemia 2	50
3,1	1.3 Detection of α -thalassemia 1	54
3.1	1.4 Sequencing of α_1 -globin gene and α_2 -globin gene	55
3.5	2 Optimization of multiplex allele-specific PCR for detection	63
	of double α/β -thalassemia heterozygote	
3.2	2.1 Test of β -globin gene mutation-specific primers newly	63
	designed and synthesized	
	2.2 Test of α -thalassemia 1 (SEA type)-specific primers	65
adans	newly designed and synthesized	
Copyright	2.3 Test of multiplex allele-specific PCR	66
3.2	2.4 Optimization of primers quantities	68
3.2	2.5 Optimization of concentration of DMSO	71
3.2	2.6 Optimization of final concentration of MgCl ₂	71


a

xi

3.2.7 Optimization of quantities of dNTPs	74
3.2.8 Optimization of target DNA	74
3.2.9 Titration of SEA-2-multiplex primers	77
3.2.10 Validation of final optimized condition	77
2.2.2.3 Determination of double heterozygous state using	81
the developed multiplex allele-specific PCR	
CHAPTER IV DISCUSSION	84
CHAPTER V CONCLUSION	92
REFERENCES	94
APPENDICES	
Appendix A List of chemicals	106
Appendix B List of instrument	110
Appendix C Reagent preparation	112
CURRICULUM VITAE	118

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

xii

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xiii

LIST OF FIGURES *bl*91

2 9 3 3 C 1 1 2/2	
FIGURE	PAGES
2.1 Schematic picture of normal α -globin gene cluster and <i>Xmn</i> I- ^G γ site	27
2.2 Location of primers 3.7A, 3.7B, 4.2C, 4.2D, GI and GII	29
in α-globin gene cluster	
2.3 Agarose gel electrophoresis of amplified products for identifying	30
the 3.7-kb and 4.2-kb deletions	
2.4 Locations of primers SEA-1, SEA-2 and SEA-3 on α -globin gene cluster	32
2.5 Locations of PCR primers and sequencing primers on	34
α-globin gene cluster.	
2.6 Schematic locations of β -globin gene common mutations	40
2.7 Locations of specific primers used in allele-specific multiplex PCR	41
3.1 XmnI-digested fragments separated on a 1.0% agarose gel	51
3.2 Agarose gel electrophoresis of PCR products for detection of	52
α -thalassemia 2 with 3.7-kb and 4.2-kb deletions	III
3.3 Agarose gel picture of α-thalassemia 1 (SEA type) after Gap-PCR process	S54
3.4 Electropherogram showing the intact "A" at ATG initial codon of	e ⁵⁶ 0
α1-globin gene	
3.5 Electropherogram showing the intact "T" at ATG initial codon of	57

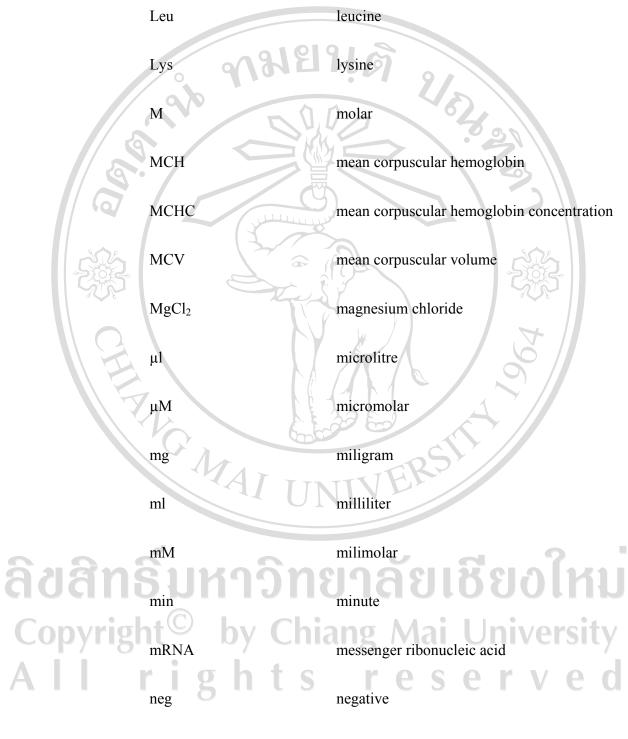
xiv

α2-globin gene	
3.6 Electropherogram showing the intact "TGAGG" at IVS1 of	58
α2-globin gene	
3.7 Electropherogram showing the intact "A" at IVS1-nt 116 of	59
α2-globin gene	
3.8 Electropherogram showing the intact "T" at CD 109 of α 2-globin gene	60
3.9 Electropherogram showing the intact "A" at CD 142 of α 2-globin gene	61
3.10 Electropherogram showing the intact "T" at CD 142 of α 2-globin gene	62
3.11 Amplified products of three β -globin gene mutation-specific primers	64
3.12 Amplified product of α -thalassemia (SEA type)-specific primers	66
3.13 Amplified product of the first-round multiplex allele-specific PCR	67
3.14 Specific amplified products of multiplex allele-specific PCR	69
3.15 Specific amplified products generated from the	70
multiplex allele-specific PCR	
3.16 Results of titration for optimal DMSO final concentration	72
3.17 Result of titration for final concentration MgCl ₂	73
3.18 Results of titration of dNTPs final concentration	75
3.19 Result of titration of amount of Chelex [™] -extracted DNA	76
3.20 Result of titration for optimal amount of SEA-2-multiplex primer	78
3.21 Amplified products generated by the optimized	79
multiplex allele-specific PCR	

xv

3.22 Amplified products generated by the optimized	80
multiplex allele-specific PCR	
3.23 Amplified products generated by the developed	82
multiplex allele-specific PCR	
3.24 Amplified products generated by the developed	84
multiplex allele-specific PCR	
REAL ANIVERSITY	
e e e e e e e e e e e e e e e e e e e	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

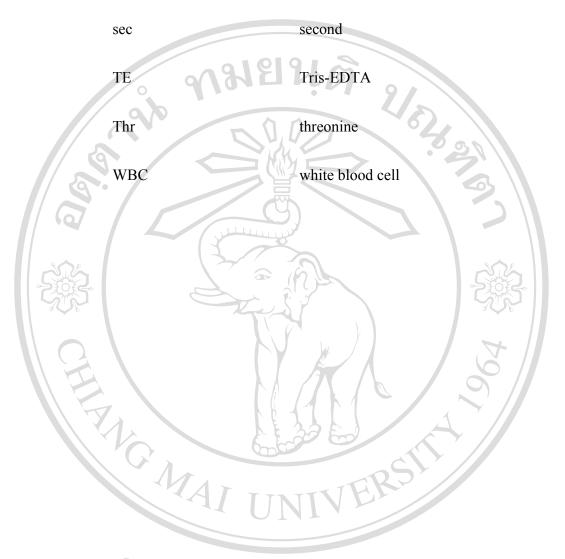

xvii

xviii

xix

XX

ng


nanogram

xxi

Ser

serine

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxii