CHAPTER III

RESULTS

520 M

3.1 Construction of pTat8-CD147 phagemid

3.1.1 Site-directed mutagenesis of pComb8-CD147Ex phagemid

In order to generate phage expressing CD147 molecule *via* Tat pathway, pComb8-CD147Ex phagemid (Intasai *et al.*, 2003) was modified by substituting the leader sequence from PelB with that from TorA. *Nsi* I restriction site at upstream of PelB signal sequence in pComb8-CD147Ex phagemid was created by Site-directed mutagenesis using MutPelBa and MutPelBb primers. After the PCR process, the mixture was treated with *Dpn* I restriction enzyme and the resulting phagemid was named MpComb8-CD147Ex. The MpComb8-CD147Ex was subsequently cleaved with *Nsi* I and *Xba* I to prepare the cloning site. The *Nsi* I- and *Xba* I-digested MpComb8-CD147Ex fragment with the molecular weight of 2,942 and 74 bp was obtained (Figure 3.1).

Copyright © by Chiang Mai University All rights reserved

Figure 3.1 Gel electrophoresis of the *Nsi* I- and *Xba* I-digested MpComb8-CD147Ex fragments. The banding pattern of the gel was shown at the molecular weight of 2,942 and 74 bp (asterisk).

Lane 1. 1 kb DNA markers

Lane 2. Nsi I- and Xba I-digested MpComb8-CD147Ex

3.1.2 TorA signal sequence amplification by PCR

Tat signal sequence (TorA) was amplified from pSPL04 by PCR using primers TatNsiIFw and TatXhoIRev. The PCR product of 161 bp was obtained (Figure 3.2). The amplified TorA was purified using PCR purification kit and followed by digesting with *Nsi* I and *Xho* I and the digested TorA with the molecular weight of 125 bp was used in the next ligation step.

3.1.3 Construction of phagemid containing Tat-CD147Ex gene

The *Nsi* I- and *Xho* I-digested TorA with the molecular weight of 125 bp was ligated to pComb8-CD147Ex of 844 bp which generated by digesting pComb8-CD147Ex with *Xho* I and *Xba* I (Figure 3.3). The 969 bp ligation product was obtained and named Tat-CD147 fragment and used as template for PCR which performed to increase the Tat-CD147 fragment for using in the next ligation step. The PCR product with the molecular weight of 1005 bp (Figure 3.4) was digested with *Nsi* I and *Xba* I and then inserted into dephosphorylated *Nsi* I -and *Xba* I-digested MpComb8-CD147, thus, the new phagemid vector, pTat8-CD147, was generated.

Figure 3.2 Analysis of PCR product of the TorA signal sequence, 161 bp, amplified from pSPL04 vector using TatNsiIFw and TatXhoIRev primers. The samples were electrophoresed in 1% agarose gel.

Lane 1. 1 kb DNA markers

Lane 2. Amplified product of TorA signal sequence

Figure 3.3 The fragment of 844 bp (asterisk) of *Xho* I- and *Xba* I-digested pCom8-CD147Ex which used for ligating with TorA signal sequence.

Lane 1.1 kb DNA markers

Lane 2. Xho I- and Xba I-digested pCom8-CD147Ex

Figure 3.4 Gel electrophoresis of the Tat-CD147 fragment which was amplified by using TatNsiIFw and Tat-CD147Rv primers. The inserted fragment of Tat-CD147 with the molecular weight of approximately 1005 bp is shown.

Lane 1. 1 kb DNA markers

Lane 2. Amplified product of Tat-CD147 fragment

3.1.4 Characterization of recombinant clones

pTat8-CD147 was successfully transformed into *E. coli*. The ampicillin resistant colonies were selected for purification of the phagemid. The purified phagemid was treated with *Nsi* I and fractionated in 1% agarose gel electrophoresis to determine the size of pTat8-CD147. The linear form of *Nsi* I-digested pTat8-CD147 at the molecular weight of 3911 bp was shown (Figure 3.5, lane 2). The correct insertion of Tat-CD147 fragment, CD147Ex and TorA signal sequence were verified by restriction fragment analysis. pTat8-CD147 was digested with the combination of enzymes; *Nsi* I and *Xba* I, *Xho* I and *Spe* I, and *Nsi* I and *Xho* I. (Figure 3.5, lane 3, 4 and 5, respectively). The verification in the correct insertion of Tat-CD147 fragment by PCR reamplification (Figure 3.6). The correct nucleotide sequence of TorA-CD147Ex-gpVIII was determined according to dideoxychain terminator procedure using BigDye Terminator v3.1 Cycle Sequencing Kit (PE Applied Biosystems, CA, USA). The resulting map of a novel constructed phagemid, pTat8-CD147, is shown in Figure 3.7.

Figure 3.5 Characterization of recombinant clone containing the inserted Tat-CD147 by restriction fragment analysis. Purified pTat8-CD147 was digested with *Nsi* I and the combination of *Nsi* I and *Xba* I, *Xho* I and *Spe* I, and *Nsi* I and *Xho* I. The inserted fragments of Tat-CD147 fragment, CD147Ex and TorA signal sequence, were retrieved from pTat8-CD147 (Lane 3, 4 and 5, respectively).

Lane 1. 1 kb DNA markers Lane 2. *Nsi* I-digested pTat8-CD147 Lane 3. *Nsi* I- and *Xba* I-digested pTat8-CD147 Lane 4. *Xho* I- and *Spe* I-digested pTat8-CD147 Lane 5. *Nsi* I- and *Xho* I-digested pTat8-CD147

58

Figure 3.6 Reamplified product of Tat-CD147 fragment from pTat8-CD147 using TatNsiIFw and Tat-CD147Rv primers. The 1005 bp reamplified product from pTat8-CD147 is shown.

Lane 1. 1 kb DNA markers

Lane 2. Reamplified product of Tat-CD147 fragment.

1	ggtggcggcc	gcaaattcta	tttcaaggag	acagtcata a	tgcataataa
51	cgatctcttt	caggcatcac	gtcggcgttt	tctggcacaa	ctcggcggct
101	taaccgtcgc	cgggatgctg	gggccgtcat	tgttaacgcc	gcgacgtgcg
151	actgcggcgc	aagcggcg ct	cgag <u>gctgcc</u>	ggcacagtct	tcactaccgt
201	agaagacctt	ggctccaaga	tactcctcac	ctgctccttg	aatgacagcg
251	ccacagaggt	cacagggcac	cgctggctga	agggggggcgt	ggtgctgaag
301	gaggacgcgc	tgcccggcca	gaaaacggag	ttcaaggtgg	actccgacga
351	ccagtgggga	gagtactcct	gcgtcttcct	ccccgagccc	atgggcacgg
401	ccaacatcca	gctccacggg	cctcccagag	tgaaggccgt	gaagtcgtca
451	gaacacatca	acgaggggga	gacggccatg	ctggtctgca	agtcagagtc
501	cgtgccacct	gtcactgact	gggcctggta	caagatcact	gactctgagg
551	acaaggccct	catgaacggc	tccgagagca	ggttcttcgt	gagttcctcg
601	cagggccggt	cagagctaca	cattgagaac	ctgaacatgg	aggccgaccc
651	cggccagtac	cggtgcaacg	gcaccagctc	caagggctcc	gaccaggcca
701	tcatcacgct	ccgcgtgcgc	agccacctgg	ccgccactag	tgctgagggt
751	gacgatcccg	caaaagcggc	ctttaactcc	ctgcaagcct	cagcgaccga
801	atatatcggt	tatgcgtggg	cgatggttgt	tgtcattgtc	ggcgcaacta
851	tcggtatcaa	gctgtttaag	aaattcacct	cgaaagcaag	ctgatagaat
901	tctaaactag	ctagtcgcca	aggagacagt	cataatgaaa	tacctattgc
951	ctacggcagc	cgctggattg	ttattactcg	ctgcccaacc	agccatggcc
1001	gagctcgtca	gttctagagt	taagcggccg	caatcgaggg	ggggcccggt
1051	acccaattcg	ccctatagtg	agtcgtatta	caattcactg	gccgtcgttt
1101	tacaacgtcg	tgactgggaa	aaccctggcg	ttacccaact	taatcgcctt
1151	gcagcacatc	cccctttcgc	cagctggcgt	aatagcgaag	aggcccgcac
1201	cgatcgccct	tcccaacagt	tgcgcagcct	gaatggcgaa	tggaaattgt
1251	aagcgttaat	attttgttaa	aattcgcgtt	aaatttttgt	taaatcagct
1301	catttttaa	ccaataggcc	gaaatcggca	aaatccctta	taaatcaaaa
1351	gaatagaccg	agatagggtt	gagtgttgtt	ccagtttgga	acaagagtcc

1401	actattaaag	aacgtggact	ccaacgtcaa	agggcgaaaa	accgtctatc
1451	agggcgatgg	cccactacgt	gaaccatcac	cctaatcaag	tttttgggg
1501	tcgaggtgcc	gtaaagcact	aaatcggaac	cctaaaggga	gcccccgatt
1551	tagagcttga	cggggaaagc	cggcgaacgt	ggcgagaaag	gaagggaaga
1601	aagcgaaagg	agcgggcgct	agggcgctgg	caagtgtagc	ggtcacgctg
1651	cgcgtaacca	ccacacccgc	cgcgcttaat	gcgccgctac	agggcgcgtc
1701	aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttattt
1751	tctaaataca	ttcaaatatg	tatccgctca	tgagacaata	accctgataa
1801	atgcttcaat	aatattgaaa	aaggaagagt	atgagtattc	aacatttccg
1851	tgtcgccctt	attccctttt	ttgcggcatt	ttgccttcct	gtttttgctc
1901	acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	gttgggtgca
1951	cgagtgggtt	acatcgaact	ggatctcaac	agcggtaaga	tccttgagag
2001	ttttcgcccc	gaagaacgtt	ttccaatgat	gagcactttt	aaagttctgc
2051	tatgtggcgc	ggtattatcc	cgtattgacg	ccgggcaaga	gcaactcggt
2101	cgccgcatac	actattctca	gaatgacttg	gttgagtact	caccagtcac
2151	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	tgcagtgctg
2201	ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc
2251	ggaggaccga	aggagctaac	cgcttttttg	cacaacatgg	gggatcatgt
2301	aactcgcctt	gatcgttggg	aaccggagct	gaatgaagcc	ataccaaacg
2351	acgagcgtga	caccacgatg	cctgtagcaa	tggcaacaac	gttgcgcaaa
2401	ctattaactg	gcgaactact	tactctagct	tcccggcaac	aattaataga
2451	ctggatggag	gcggataaag	ttgcaggacc	acttctgcgc	tcggcccttc
2501	cggctggctg	gtttattgct	gataaatctg	gagccggtga	gcgtgggtct
2551	cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	cccgtatcgt
2601	agttatctac	acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac
2651	agatcgctga	gataggtgcc	tcactgatta	agcattggta	actgtcagac
2701	caagtttact	catatatact	ttagattgat	ttaaaacttc	atttttaatt
2751	taaaaggatc	taggtgaaga	tcctttttga	taatctcatg	accaaaatcc
2801	cttaacgtga	gttttcgttc	cactgagcgt	cagaccccgt	agaaaagatc
2851	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	gctgcttgca
2901	aacaaaaaaa	ccaccgctac	cagcggtggt	ttgtttgccg	gatcaagagc
2951	taccaactct	ttttccgaag	gtaactggct	tcagcagagc	gcagatacca
3001	aatactgtcc	ttctagtgta	gccgtagtta	ggccaccact	tcaagaactc
3051	tgtagcaccg	cctacatacc	tcgctctgct	aatcctgtta	ccagtggctg
3101	ctgccagtgg	cgataagtcg	tgtcttaccg	ggttggactc	aagacgatag
3151	ttaccggata	aggcgcagcg	gtcgggctga	acggggggtt	cgtgcacaca
3201	gcccagcttg	gagcgaacga	cctacaccga	actgagatac	ctacagcgtg
3251	agctatgaga	aagcgccacg	cttcccgaag	ggagaaaggc	ggacaggtat
3301	ccggtaagcg	gcagggtcgg	aacaggagag	cgcacgaggg	agcttccagg
3351	gggaaacgcc	tggtatcttt	atagtcctgt	cgggtttcgc	cacctctgac
3401	ttgagcgtcg	attttgtga	tgctcgtcag	gggggggggag	cctatggaaa
3451	aacgccagca	acgcggcctt	tttacggttc	ctggcctttt	gctggccttt
3501	tgctcacatg	ttctttcctg	cgttatcccc	tgattctgtg	gataaccgta
3551	ttaccgcctt	tgagtgagct	gataccgctc	gccgcagccg	aacgaccgag
3601	cgcagcgagt	cagtgagcga	ggaagcggaa	gagcgcccaa	tacgcaaacc
3651	gcctctcccc	gcgcgttggc	cgattcatta	atgcagctgg	cacgacaggt
3701	ttcccgactg	gaaagcgggc	agtgagcgca	acgcaattaa	tgtgagttag

3751 ctcactcatt aggcacccca ggctttacac tttatgcttc cggctcgtat 3801 gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg 3851 accatgatta cgccaagctc gaaattaacc ctcactaaag ggaacaaaag 3901 ctggccaccg c

Figure 3.7 Map of pTat8-CD147 phagemid. The *Nsi* I- and *Xba* I-cloning sites are where the Tat-CD147 fragment was inserted; the origin of replication (ColE1), lac promoter, Tat signal sequence (TorA) and gpVIII are shown. The complete nucleotide sequences were demonstrated (below). TorA signal sequence (Gene ID: 946267) was designated in bold letters and CD147Ex coding sequence (Gene ID: 682) was underlined. gpVIII gene (Gene ID: 927333) was indicated in box.

3.2 Comparison of phage-displayed CD147Ex expression by Sandwich ELISA

Phage displaying CD147Ex *via* gpVIII by Tat pathway (Φ Tat-CD147gpVIII) was produced by infecting the pTat8-CD147 transformed TG-1 with VCSM13 helper phage. In addition, phage display of CD147 fusion protein from TG-1 Δ *tatABC* mutant was performed to validate the TorA signal peptide in directing the CD147 fusion protein *via* the Tat pathway. The expression of recombinant CD147Ex-gpVIII through the Tat pathway was determined in comparison with Sec pathway by Sandwich ELISA. A panel of anti-CD147 mAbs (M6-1D4, M6-1E9, M6-1F3, M6-2B1 and M6-2F9) was used as the capture antibody. By using HRP-conjugated anti-gpVIII, Φ Tat-CD147gpVIII showed higher absorbance unit than did Φ Sec-CD147gpVIII with all anti-CD147 mAbs (Figure 3.8). However, the binding activity of phage which was produced from TG-1 Δ *tatABC* mutant (Φ Tatmut-CD147gpVIII) to the mAb-coated wells was unexpected comparably to Φ Tat-CD147gpVIII. None of CD147 mAbs captured VCSM13, which assured the specificity of assay. In addition, the nonspecific binding of phages was ruled out since the signal was undetectable in any uncoated wells.

Figure 3.8 Comparison of the expression of phage-displayed CD147Ex *via* Tat and Sec pathway by Sandwich ELISA. Anti-CD147 mAbs (M6-1D4, M6-1E9, M6-1F3, M6-2B1, and M6-2F9) were used to capture recombinant phages. The binding activity of each tested phage was compared using an arbitrary optical density unit at 450 nm. This experiment was done in duplicate. Phage displayed CD147Ex on gpVIII *via* Tat pathway, ΦTat-CD147gpVIII (first bar); phage displayed CD147Ex on gpVIII *via* Sec pathway, ΦSec-CD147gpVIII (second bar); phage displayed CD147Ex on gpVIII produced from tat mutant, ΦTatmut-CD147gpVIII (third bar); VCSM13 phage (forth bar) and no phage (last bar).

3.3 Demonstration of anchored CD147Ex on phage particles by Sandwich ELISA

To confirm that CD147 molecules were linked to the phage particles, the biotinylated anti-gpIII mAb/HRP-conjugated anti-biotin antibody detection system was applied. As shown in Figure 3.9, ΦTat-CD147gpVIII showed higher binding activity than ΦSec-CD147gpVIII against most of anti-CD147 mAbs excepted for M6-1F3 in which the similar signal was observed. ΦTatmut-CD147gpVIII and VCSM13 were not recognized by each anti-CD147 mAbs and this result was also obtained in uncoated wells.

3.4 Western immunoblotting

 Φ Tat-CD147gpVIII and Φ Tatmut-CD147gpVIII (10¹⁰ cfu each) were fractionated by SDS-PAGE under reducing conditions, electroblotted and probed with pooled CD147 mAbs (M6-1D4 and M6-1E9). An immuno-reactive band with molecular weight of 28 kDa was visualized (Figure 3.10). This band appeared at the same size of Φ Sec-CD147gpVIII in previous study (Intasai *et al*, 2003). The band was considered a fusion protein of CD147Ex (20 kDa) and gpVIII (6 kDa). No reactive band was detected in the control lane in which VCSM13 phages were used.

Figure 3.9 Detection of CD147Ex presenting on phage particles *via* gpVIII by Sandwich ELISA. The recombinant phages were captured with five of anti-CD147 mAbs (M6-1D4, M6-1E9, M6-1F3, M6-2B1, and M6-2F9). The biotinylated anti-gpIII mAb/streptavidin conjugated HRP detection system was used for tracing the antibody-bound phages. The experiment was done in duplicate and the symbols of phage in each bars were used the same as described in Figure 3.8.

Figure 3.10 Western immunoblotting of phage-displayed CD147ExgpVIII. Immunological assay was performed by probing with a combination of anti-CD147 mAbs (M6-1D4 and M6-1E9). The immuno-reactive bands were visualized by chemiluminescence substrate detection system. Molecular weight markers in kDa were indicated.

Lane 1. ΦTat-CD147gpVIII Lane 2. ΦTatmut-CD147gpVIII Lane 3. VCSM13 phage