TABLE OF CONTENTS

	PAGE
ACKNOWLEDGMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
ABBERVIATIONS	xv
CHAPTER I: INTRODUCTION	300
1.1 Statement and significance of problem	502
1.2 Literature reviews	3
1.2.1 Plasma lipoproteins	3.
1.2.2 Lipoprotein metabolism	6
1.2.3 Low density lipoproteins	7/
1.2.3.1 LDL particle structure	/ /7
1.2.3.2 LDL receptors and receptor mediated metabolism	8
1.2.4. LDL and atherogenesis	10
1.2.5 Small dense LDL and atherogenesis	11
1.2.6 Risk factors and mediators of atherosclerosis	12
1.2.6.1 LDL modification	12
1.2.6.2 Diabetes mellitus	
1.2.6.3 Cigarette Smoking	lai University
1.2.6.4 Hypercholesterolemia	
1.2.6.5 Hypertension	s'e r 16' e c
1.2.6.6 Lipoprotein(a)	16
1.2.6.7 Homocysteine	16
1.2.7 Oxidized LDL receptor and metabolism	17
1.2.8 Possible mechanisms of atherogenesis	18

1.2.9 Determination of LDL oxidation	20
1.2.10 LDL cholesterol and U937 cells	21
1.2.11 Free radicals	22
1.2.12 Antioxidants	25
1.2.13 Antioxidant vitamins and diabetics	28
1.2.14 Antioxidant vitamins and the prevention of coronary heart disease	28
1.2.15 Turmeric	29
1.3 Objectives	35
CHAPTER II: MATERIALS AND METHODS	
2.1 Specimen collection and evaluation	36
2.2 U937 cell preparation and proliferation assay	36
2.3 Antioxidants preparation	37
2.4 Total antioxidant capacity (TAC) of curcuminoids. α-tocolpherol and	37
ascorbic acid by ABTS method	
2.5 Cytotoxic effect of curcuminoids, α-tocopherol and ascorbic acid on U937 cells	39
2.6 LDL preparation and protein determination	39
2.6.1 LDL preparation	39
2.6.2 LDL protein determination	40
2.7 LDL oxidation preparation and evaluation	41
2.7.1 Lipoprotein electrophoretic analysis	41
2.7.2 Determination of conjugated diene formation	42
2.7.3 Determination of Thiobarbituric acid reactive substances (TBARs)	42
formation	
2.8 Oxidative susceptibility of LDL oxidation in healthy with normolipidemic and	43
diabetic with hyperlipidemic groups	
2.8.1 Determination of cellular LDL uptake by U937 cells	43
2.8.2 Determination of conjugated diene formation	44
2.8.3 Determination of thiobarbituric acid reactive substances (TBARs) formation	44
2.9 Effect of curcuminoids on inhibition of Cu ²⁻ mediated LDL oxidation	44

2.9.1 Comparison between healthy with normolipidemic and diabetic with	44
hyperlipidemic groups	
2.9.1.1 Determination of cellular LDL uptake by U937 cells	44
2.9.1.2 Determination of conjugated diene formation	45
2.9.1.3 Determination of Thiobarbituric acid reactive substances (TBARs)	46
formation	
2.9.2 Comparison with α-tocolpherol and ascorbic acid	47
2.9.2.1 Determination of cellular LDL uptake by U937 cells	47
2.9.2.2 Determination of conjugated diene formation	49
2.9.2.3 Determination of Thiobarbituric acid reactive substances (TBARs)	49
formation	
2.10 Effect of curcuminoids on ox-LDL determined cellular LDL uptake by U937	51
cells	
2.10.1 Comparison between healthy with normolipidemic and diabetic with	51
hyperlipidemic group	
2.10.2 Comparision with α-tocolpherol and ascorbic acid	51
2.11 Staining for cellular LDL uptake	53
2.12 Statistics	53
CHAPTER III: RESULTS	
3.1 General parameter comparison between healthy with normolipidemic and	54
diabetic with hyperlipidemic group	
3.2 Total antioxidant capacity (TAC) of curcuminoids, α-tocopherol, and	56
ascorbic acid	
3.3 Effect of curcuminoids, α-tocopherol and ascorbic acid on U937 cell	57
cytotoxicity	
3.4 LDL preparation and protein determination	59
3.4.1 Separation of the LDL from plasma	59
3.4.2 Protein concentration of individual's LDL fraction	60
3.5 Evaluation of LDL and LDL oxidation	61
3.5.1 Electrophoretic mobility	61

3.5.2 Conjugated diene formation	63
3.5.3 Thiobarbituric acid reactive substances (TBARs) formation	63
3.6 The oxidative susceptibility of LDL in healthy with normolipidemic and	63
diabetic with hyperlipidemicgroups	
3.6.1 Cellular LDL uptake by U937 cells	63
3.6.2 Conjugated dienes formation	65
3.6.3 Thiobarbituric acid reactive substances (TBARs) formation	66
3.7 The effect of curcuminoids on inhibition Cu ²⁺ induced LDL oxidation	67
3.7.1 Comparison between healthy and diabetic groups	67
2.7.1.1 Cellular LDL uptake by U937 cells	67
3.7.1.2 Conjugated diene formation	69
3.7.1.3 Thiobarbituric acid reactive substances (TBARs) formation	70
3.7.2 Comparison with α -tocopherol and ascorbic acid	71
3.7.2.1 Cellular LDL uptake by U937 cells	71
3.7,2.2 Conjugated diene formation	73
3.7.2.3 Thiobarbituric acid reactive substances (TBARs) formation	75
3.8 The effect of curcuminoids on ox-LDL determined cellular LDL uptake by U937	77
cells	
2.8.1 Comparisom between healthy and diabetic groups	77
3.8.2 Comparison with α-tocopherol and ascorbic acid	78
CHAPTER IV: DISCUSSION	79
REFERENCES	90
REFERENCES APPENDIX	100
wtopyright by Chiang Mai Un	iversity

LIST OF TABLES

TA	BLE	PAGE
1.	Experimental design for studying the effect of curcuminoids on inhibition of LDL	45
	oxidation determined by U937 cellular LDL uptake	
2.	Experimental design for studying the effect of curcuminoids on inhibition of LDL	46
	oxidation determined by conjugated dienes formation	
3.	Experimental design for studying the effect of curcuminoids on inhibition of LDL	47
	oxidation determined by TBARs formation	
4.	Experimental design for studying the effect of curcuminoids compared with α -	48
	tocopherol and ascorbic acid on inhibition of LDL oxidation determined by U937	
	cellular LDL uptake	
5.	Experimental design for studying the effect of curcuminoids compared with α -	49
	tocopherol and ascorbic acid on inhibition of LDL oxidation determined by	
	conjugated dienes formation	
6.	Experimental design for studying the effect of curcuminoids compared with α-	50
	tocopherol and ascorbic acid on inhibition of LDL oxidation determined by	
	TBARs formation	
7.	Experimental design for studying the effect of curcuminoids compare with α -	52
	tocolpherol and ascorbic acid on ox-LDL determined by U937 cellular LDL uptake	
8.	General parameter comparison between healthy with normolipidemic and diabetes	55
	with hyperlipidemic groups	
9.	Total antioxidant capacity of curcuminoids, α-tocopherol and ascorbic acid	ST STU
10.	Protein concentrations of LDL isolated from healthy with normolipidemic and	60
	diabetic with hyperlinidemic individuals	

LIST OF FIGURES

FIC	NUMBER	PAGE
1.	U937 cells stained with oil red O and Mayer's hematoxylin	53
2.	Linearity curve of Trolox at 734 nm	56
3.	Cytotoxicity effect of curcuminoids, α-tocopherol and ascorbic acid on U937 cell	58
	line measured by trypan blue exclusion method	
4.	VLDL, LDL and HDL fractions isolated by the single vertical spin discontinuous	59
	density gradient ultracentrifugation	
5.	Electrophoretic mobility of LDL and ox-LDL on cellulose acetate membrane	62
6.	Oxidative susceptibility of LDL determined by U937 cellular LDL uptake	64
7.	Oxidative susceptibility of LDL determined by conjugated dienes formation	65
8.	Oxidative susceptibility of LDL determined by TBARs formation	66
9.	Effect of curcuminoids on inhibition of Cu ²⁻ induced LDL oxidation determined	68
	by U937 cellular LDL uptake	
10.	Effect of curcuminoids on inhibition of Cu ² -induced LDL oxidation determined	69
	by conjugated diene formation	
11.	Effect of curcuminoids on Cu ² -induced LDL oxidation determined by TBARs	70
	formation	
12.	Comparison the effect of curcuminoids, α-tocopherol and ascorbic acid on Cu ²⁻ -	72
	induced LDL oxidation determined by U937 cellular LDL uptake	
13.	Comparison the effect of curcuminoids, α-tocopherol and ascorbic acid on Cu ²⁻ -	74
	induced LDL oxidation monitored at 234 nm	
14.	Comparison the effect of curcuminoids, α-tocopherol and ascorbic acid on the	76
	Cu ²⁻ -induced LDL oxidation determined by TBARs formation	
15.	Effect of curcuminoids on ox-LDL determined by U937 cellular LDL uptake	77
16.	Comparison the effect of curcuminoids, α-tocopherol and ascorbic acid on	
	ox-LDL determined by U937 cellular LDL uptake	78

17. The oxidative susceptibility of LDL in healthy and diabetics groups	82
18. Mechanism of curcuminoids on inhibition of Cu ²⁺ -induced LDL oxidation	85
19. Effect of curcuminoids, α-tocopherol and ascorbic acid on Cu ²⁺ -induced oxidation	86
ofLDL	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBERVIATIONS

μg: Microgram

μL: Microlitre

μm: Micrometre

μM: Micromolar

AA: Ascorbic acid

ABTS: 2,2 - Azinobis-(3-ethylbenzothiazoline-6-sulphonic acid)

ACE: Angiotensin-converting enzyme

Ac-LDL: Acetylated LDL

Ang: Angiotensin

Ang II-LDL: Ang II-modified LDL

AOC: Alanine oxidation coefficient

Apo: Apolipoprotein

BHT: Butylated hydroxytoluene

BMI: Body mass index

BSA: Bovine serum alblumin

CAD: Coronary artery disease

CD: Conjugated diene

CE: Cholesteryl ester

CETP: Cholesterol ester transport protein

CHD: Coronary heart disease

CM: Chylomicron

CO₂: Carbon dioxide

COX: cyclo-oxygenase

Cur: Curcuminoids

CuSO₄: Copper sulfate

Da: Dalton

Dcur: Demethoxycurcumin

diH₂O: Distilled water

DMSO: Dimethyl sulfoxide

DNA: Deoxyribonucleic acid

EC: Endothelial cell

EDTA: Ethylene diamine tetraacetic acid

FBS: Fasting blood sugar

FC: Free (unesterified) cholesterol

FCS: Fetal calf serum

FDB: Familial defective apolipoprotein B-100

FGF: Fibroblast growth factor

g: Gram

g/dL: Gram per deciliter

GR: Glutathione reductase

GSH: Reduced glutathione

h: Hour

H₂O₂: Hydrogen peroxide

HDL: High density lipoprotein

HEPES: N-2-hydroxythylpiperazine-N-2-ethanesulphonic acid

HL: Hepatic lipase

HMG-CoA: 3-hydroxy-3-methylglutaryl-coenzyme A

HOCl: Hypochlorous acid

HS: Heparan sulfate

IDL: Intermediate density lipoprotein

KBr: Potassium bromide

KCl: Potassium chloride

kDa: Kilodalton

KH₂PO₄: Dibasic potassium phosphate

LCAT: Lecithin-cholesterol acyltransferase

LDL: Low density lipoprotein

LO: Alkoxyl radical

LO₂: Peroxyl radical

LOX: lipoxygenase

LP: Lipid peroxidation

LPL: Lipoprotein lipase

MDA: Malondialdehyde

MDA-LDL: Malondialdehyde-modified LDL

MDM: Monocyte-derived macrophage

Met Hb: Metmyoglobin

mg: Milligram

MI: Myocardial infarction

min: Minute

mL: Milliliter

mM: Millimole

Na₂CO₃: Sodium carbonate

Na₂HPO₄: Monobasic sodium phosphate

NaCl: Sodium chloride

NaH₂PO₄: Dibasic sodium phosphate

NaHCO3: Sodium bicarbonate

NaOH: Sodium hydroxide

nm: Nanometer

NO: Nitric oxide

NSS: Normal saline solution

¹O₂: Singlet oxygen

O₂: Superoxide anion

OD: Optical density

OH : Hydroxyl radical

ox-LDL: Oxidized low density lipoprotein

PBS: Phosphate buffered saline

PDGF: Platelet-derived growth factor

PL: Phospholipid

xviii

PMA: Phorbol myristate acetate

PUFA: Polyunsaturated fatty acids

PUFA- O: Lipid alkoxyl radical

PUFA -OO : Lipid peroxyl radical

PUFA -OOH: Lipid hydroperoxide

ROS: Reactive oxygen species

rpm: Revolution per minute

R-S: Thiyl radical

SD: Standard deviation

SMC: Smooth muscle cell

SOD: Superoxide dismutase

SR: Scavenger-receptor

SR-A: Class A (collagen-like) scavenger receptors

TAC: Total antioxidant capacity

TBA: Thiobarbituric acid

TBARs: Thiobarbituric acid reactive substances

TCA: Trichloroacetic acid

TG: Triglyceride

TGF: Transforming growth factor

TNF-alpha: Tumor necrosis factor alpha

TRAP: Total peroxyl radical trapping potential

VLDL: Very low density lipoprotein