เอกสารอ้างอิง

กุ้งนาง ตะมะรวย. 2552. ผลของโปรตีนและไขมันที่มีต่อโครงสร้างและลักษณะทางกายภาพของ เชอร์เบทแครอท. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต (สาขาวิทยาศาสตร์และเทคโนโลยี การอาหาร) มหาวิทยาลัยเชียงใหม่.

จุทารัตน์ โกวิทยา. 2549 . ปัจจัยที่มีผลต่อคุณภาพของไอศกรีมวานิลาลดไขมันที่ใช้อินูลินเป็นสาร ทดแทนไขมัน. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต (สาขาวิทยาศาสตร์และเทคโนโลยี การอาหาร) มหาวิทยาลัยเกษตรศาสตร์.

เทพกัญญา ตันต โยทัย. 2545. ผลของอิมัลซิไฟเออร์และแซนแทนกัมต่อความคงตัวของอิมัลชัน ชนิดน้ำมันในน้ำและการนำไปใช้ในอาหาร. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต (พัฒนาผลิตภัณฑ์อุตสาหกรรมเกษตร) มหาวิทยาลัยเกษตรศาสตร์.

ไพ โรจน์ วิริยจารี. 2545 . การวางแผนและวิเคราะห์ทางด้านประสาทสัมผัส. ภาควิชาเทคโนโลยี การพัฒนาผลิตภัณฑ์ คณะอุตสาหกรรมเกษตร มหาวิทยาลัยเชียงใหม่.

ผู้จัดการรายสัปดาห์. (2553). "4 กลยุทธ์รุกตลาดไอศกรีมยุกต์ใหม่" [ระบบออนไลน์]. แหล่งที่มา. http://www.gotomanager.com/news/details.aspx? $\mathrm{id}=55176$ (4 ตุลาคม 2553).

ผู้จัดการออนไลน์. (2553). "บี เนเชอรัล บุกไอศกรีมพรีเมียมไทย" [ระบบออนไลน์]. แหล่งที่มา. http://www.manager.co.th/Business/ViewNews.aspx?NewsID=952000005951 8 (4 ตุลาคม 2553).

ศูนย์วิจัยกสิกรไทย. (2553). "ไอศกรีมปี 50 มูลค่าตลาด 11,000 ล้านบาท เติบโตร้อยละ 5 " [ระบบออนไลน์]. แหล่งที่มา. http://www.kasikornresearch.com/TH/KEcon\ Analysis/Pages/ViewSummary.aspx?docid=8170 (4 ตุลาคม 2553).

สำนักงานคณะกรรมการอาหารและยา. 2553. พระราชบัญญูติอาหาร พ.ศ. 2544 . กองสารวัตร สำนักงานคณะกรรมการอาหารและยา กระทรวงสาธารณะสุข.

หทัยทิพย์ ร้องคำ. 2552 . ผลของสารทดแทนไขมันแบบผสม และสารให้ความหวานต่อคุณภาพ ของไอศกรีมวนิลาลดไขมัน และลดพลังงาน. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต (สาขาวิทยาศาสตร์และเทคโนโลยีการอาหาร) มหาวิทยาลัยเชียงใหม่.

อรุณี อภิชาติสรางกูร. 2548. การวิเคราะห์อาหารขั้นสูง. ภาควิชาวิทยาศาสตร์และเทคโนโลยีการ อาหาร คณะอุตสาหกรรมเกษตร มหาวิทยาลัยเชียงใหม่.

Adapa, S. Dingeldein, H. Schmidt, K.A. and Herald, T.J. 2000. Rheological properties of ice cream mixes and frozen ice cream containing fat and fat replacers. Journal of Dairy Science, 83: 2224-2229.

Agboola, S. D. and Dalgleish, D. G. 1995. Calcium-induced destabilization of oil-inwater emulsions stabilized by caseinate or by β-lactoglobulin. Journal of Food Science, 60: 399-404.

Agboola, S.O. and Dalgleish, D.G. 1996. Enzymatic hydrolysis of milk protein used for emulsion. 1. Kinetics of protein breakdown and storage stability of the emulsions. Journal of Agricultural and Food Chemistry, 44: 3631-3636.

Aime, D.B., Arntfield, S.D., Malcolmson, L.J. and Ryland, D. 2001. Textural analysis of fat reduced vanilla ice cream products. Food Research International, 34: 237-246.

Aken, G.A.V. 2004. Coalescence mechanisms in protein stabilized emulsions. In Food emulsions, edited by Friberg, Larsson and Sjoblom, $4^{\text {th }}$ ed. Marcel Dekker, Inc., New York.

Akhtar, M., Stenzel, J., Murray, B.S., and Dickinson, E. 2005. Factors affecting the perception of creaminess of oil-in-water emulsions. Food Hydrocolloids, 19: 521-526.

AOAC. 2000. Official Methods of AOAC International. $17^{\text {th }}$ ed. The Association of Official Analytical Chemists, Inc. USA.

Aoki, T., Decker, E.A., and McClements, D.J. 2005. Influence of environmental stresses on stability of O / W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocolloids, 19: 209-220.

Arbuckle, 1986. Ice Cream. $4^{\text {th }}$ ed. AVI Publishing Co., Inc., Westport, Connecticut.

Barfod, N.M., Krog, N., Larsen, G., and Buchheim, W. 1991. Effects of emulsifiers on protein-fat interaction in ice cream mix during ageing I: Quantitative analyses. Fat Science and Technology, 93: 24-29.

Bolliger, S. Goff, H.D. and Tharp, B.W. 2000. Correlation between colloidal properties of ice cream mix and ice cream. International Dairy Journal, 10: 303-309.

Boutin, C. Giroux, H.J. Paquin, P. and Britten, M. 2007. Characterization and acidinduced gelation of butter oil emulsions produced from heated whey protein despersions. International Dairy Journal, 17: 696-703.

Bower, C. Gallegos, C. Mackley, M.R. and Madiedo, J.M. 1999. The rheological and microstructural characterisation of the non-linear flow behaviour of concentrated oil-in-water emulsions. Rheologica Acta, 38: 145-159.

Bower, C. Washington, C. and Purewal, T.S. 1997. The use of image analysis to characterize aggregates in a shear field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 127: 105-112.

Bujannunez, M.C. and Dickinson, E. 1994. Brownian dynamics simulation of a multi subunit deformable particle in simple shear-flow. Journal of the Chemical Society-Faraday Transaction, 90: 2737-2742.

Clarke, C. 2004. The science of ice cream. UK: The Royal Society of Chemistry.
Damianou, K. and Kiosseoglou, V. 2006. Stability of emulsions containing a whey protein concentrate obtained from milk serum through carboxymethylcellulose complexation. Food Hydrocolloids, 20: 793-799.

Dalgleish, D.G. 1997. Adsorption of protein and the stability of emulsions. Trend in Food Science and Technology, 8: 1-6.

Dalgleish, D. G. 2006. Food emulsions: Their structures and structure-forming properties. Food Hydrocolloids, 20: 415-422.

Demetriades, K., Coupland, J.N., and McClements, D.J. 1997. Physicochemical properties of whey protein-stabilized emulsions as affected by heating and ionic strength. Journal of Food Science, 62: 462-467.

Dervisoglu, M. 2006. Influence of hazelnut flour and skin addition on the physical, chemical and sensory properties of vanilla ice cream. International Journal of Food Science and Technology, 41: 576-661.

Dickinson, E. 1999. Caseins in emulsions: Interfacial properties and interactions. International Dairy Journal, 9: 305-312.

Dickinson, E. and Golding, M. 1997. Rheology of sodium caseinate stabilized oil-inwater emulsions. Journal of Colloidal and Interface Science, 191: 166-176.

Dickinson, E. and McClements, D.J. 1995. Advances in Food Colloids. Blackie Academic \& Professional, UK.

Etzel, M.R. 2004. Manufacture and use of dairy protein fractions. The Journal of Nutrition, 134: 996-1002.

Euston, S. R. and Hirst, R. L. 2000. The emulsifying properties of commercial milk protein products in simple oil-in-water emulsions in model food systems. Journal of Food Science, 65: 924-940.

Friberg, S.E., Larsson, K., and Sjoblom, J. 2004. Food emulsions. $4^{\text {th }}$ ed. Marcel Dekker, Inc., New York.

Goff, H.D. 2010a. Ice cream manufacture. Dairy science and technology. [online]. Available on: http://www.foodsci.uoguelph.ca/dairyedu/icmanu.html. (4 September 2010)

Goff, H.D. 2010b. Colloidal (fat and air) structure of ice cream. Dairy science and technology. [online]. Available on: http://www.foodsci.uoguelph.ca/deicon/icstruc.html. (4 September 2010)

Goff, H.D. 2010c. Ice cream structure. Dairy science and technology. [online].
Available on: http://www.foodsci.uoguelph.ca/dairyedu/icmilos2.html. (4 September 2010)

Goff, H.D. and Jordan, W.K. 1989. Action of emulsifiers in promoting fat destabilization during the manufacture of ice cream. Journal of Dairy Science, 72: 18-29.

Granger, C. Leger, A. Barey, P. Langendorff, V. and Cansell, M. 2005. Influence of formulation on the structural networks in ice cream. International Dairy Journal, 15: 255-262.

Henning, D.R.K., Baer, R.J., Hassan, A.N., and Dave, R. 2006. Major advances in concentrated and dry milk product, cheese, and milk fat-based spreads. Journal of Dairy Science, 89: 1179-1188.

Hunt, J.A. and Dalgleish, D.H. 1995. Heat stability of oil-in-water emulsions containing milk proteins: Effect of ionic strength and pH. Journal of Food Science, 60: 1120-1123.

Ibanoglu, I. 2002. Rheological behaviour of whey protein stabilized emulsion in presene of gum arabic. Journal of Food Engineering, 52: 273-277.

Innocente, N., Comparin, D., and Corradini, C. 2002. Proteose-peptone whey fraction as emulsifier in ice-cream preparation. International Dairy Journal, 12: 69-74.

Khalloufi, S. Alexander, M. Goff, H.G. and Corredig, M. 2008. Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH. Food Research International, 41: 964972.

Kim, H.J. Decker, E.A. and McClements, D.J. 2002a. Impact of protein surface denaturation on droplet flocculation in hexadecane oil-in-water emulsions stabilized by β-lactoglobulin. Journal of Agricultural and Food Chemistry, 50: 7131-7137.

Kim, H.J. Decker, E.A. and McClements, D.J. 2002b. Role of post adsorption conformation change of β-lactoglobulin on its ability to stabilized oil droplets against flocculation during heating at neutral pH . Langmuir, 18: 7577-7583.

Kulmyrzaev, A.A. and Schubert, H. 2004. Influence of KCl on the physicochemical properties of whey protein stabilized emulsions. Food Hydrocolloids, 18: 1319.

Kulmyrzaev, A. Sivestre, M.P.C. and McClements, D.J. 2000. Rheology and stability of whey protein stabilized emulsion with high CaCl_{2} concentrations. Food Research International, 33: 21-25.

Lizarraga, M.S., Pan, L.G., Anon, M.C., and Santiago, L.G. 2008. Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions-I. Whey protein concentrate. Food Hydrocolloids, 22: 868-878.

Lobo, L. 2002. Coalescence during emulsification; 3. Effect of gelatin on rupture and coalescence. Journal of Colloid and Interface Science, 254: 165-174.

Lobo, L. and Svereika, A. 2003. Coalescence during emulsification; 2. Role of small molecule surfactants. Journal of Colloid and Interface Science, 261: 498-507.

Manoi, K. and Rizvi, S.S.H. 2009. Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocolloids, 23: 1837-1847.

Marshall, R.T. and Arbuckle, W.S. 1996. Ice cream. $5^{\text {th }}$ ed. International Thomson Publishing, New York.

McClements, D.J. (2005). Food emulsions: principles, practices and techniques. Boca Raton: CRC Press, Florida.

McClements, D.J. Monahan, F.J. and Kinsella, J.E. 1993. Disulfide bond formation affects the stability of whey protein stabilized emulsion. Journal of Food Science, 58: 1036-1039.

Morr, C.V. and Foegeding, E.A. 1990. Composition and functionality of commercial whey and milk protein concentrate and isolate: a status report. Food Technology, 44: 100-112.

Morr, C.V. and Ha, E.Y.W. 1993. Whey protein concentrate and isolate: processing and functional properties. Critical Reviews in Food Science and Nutrition, 33: 431-476.

Onsaard, E. Vittayanont, M. Srigam, S. and McClements, D.J. 2006. Comparison of properties of oil-in-water emulsions stabilized by coconut cream proteins with those stabilized by whey protein isolate. Food Research International, 39: 7886.

Onwulata, C.I. and Huth, P.I., 2008. Whey Processing, Functionality and Health Benefits. Blackwell Publishing and the Institute of Food Technologists, USA.

Pelan, B.M.C., Watts, K.M., Campbell, I.J., and Lips, A. 1997. The stability of aerated milk protein emulsion in the presence of small molecule surfactants. Journal of Dairy Science, 80: 2631-2638.

Prindiville, E.A., Marshall, R.T., and Heymann, H. 1999. Effect of milk fat on the sensory properties of chocolate ice cream. Journal of Dairy Science, 82(7): 1425-1432.

Quemada, D. and Berli, C. 2002. Energy of interaction in colloids and its implications in rheological modeling. Advances in Colloid and Interface Science, 98: 5185.

Rao, M.A. 1999. Rheology of fluids and Semisolid Foods: Principles and Applications. New York.

Ruger, P.R., Baer, R.J., and Kasperson, K.M. 2002. Effect of double homogenization and whey protein concentrate on the texture of ice cream. Journal of Dairy Science, 85: 1684-1692.

Segall, K.I. and Goff, H.D. 1999. Influence of adsorbed milk protein type and surface concentration on the quiescent and shear stability of butteroil emulsions. International Dairy Journal, 9: 683-691.

Segall, K.I. and Goff, H.D. 2002. A modified ice cream processing routine that promotes fat destabilization in the absence of added emulsifier. International Dairy Journal, 12: 1013-1018.

Singh, H. Tamehana, M. Hemar, Y. and Munro, P.A. 2003. Interfacial composition, microstructure and stability of oil-in-water emulsions formed with mixture of milk proteins and k-carrageenan: 2. Whey protein isolate (WPI). Food Hydrocolloids, 17: 549-561.

Sofjan, R.P. and Hartel, R.W. 2004. Effect of overrun on structural and physical characteristics of ice cream. International Dairy Journal, 14: 255-262.

Sun, C. and Gunasekaran, S. 2009. Effect of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 23: 165-174.

Sun, C. Gunasekaran, S. and Richards, M.P. 2007. Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21: 555-564.

Surh, J. Gu, Y.S. Decker, E.A. and McClements, D.J. 2005. Influence of environmental stresses on stability of O / W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes. Journal of Agricultural and Food Chemistry, 53: 4236-4244.

Surh, J. Ward, L.S. and McClements, D.J. 2006. Ability of conventional and nutritionally-modified whey protein concentrates to stabilize oil-in-water emulsions. Food Research International, 39: 761-771.

Tcholakova, S. Denkov, N.D. Ivanov, I.B. and Campbell, B. 2002. Coalescence in Beta-lactoglobulin-stabilized emulsion: Effect of protein adsorption and drop size. Langmuir, 18: 8960-8971.

Tcholakova, S. Denkov, N.D. Sidzhakova, D. Ivanov, I.B. and Campbell, B. 2003. Interrelation between drop size and protein adsorption at various emulsification conditions. Langmuir, 19: 5640-5649.

Walstra, P. Geurts, T.J. Noomen, A. Jellema, A. and Van Boekel, M. A. J. S. 1999. Dairy technology: Principles of milk properties and processes. Marcel Dekker, Inc. New York.

Wildmoser, H. Scheiwiller, J. and Windhab, E.J. 2004. Impact of disperse microstructure on rheology and quality aspects of ice cream. LebensmittelWissenschaft und-Technologie, 37: 881-891.

