TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	on iii
ABSTRACT (in Thai)	iv
ABSTRACT (in English)	vii
LIST OF TABLES	xiv
LIST OF FIGURES	xix
ABBREVIATIONS AND SYMBOLS	xxii
CHAPTER 1 Introduction	7
CHAPTER 2 Literature review	4
2.1 Botanical characteristics of <i>C. alismatifolia</i> Gagnep.	4
2.2 C. alismatifolia production	7
2.3 Tissues culture production	8
2.4 Effects of fertilizer on growth of Curcuma	9
2.5 Biofertilizer use in agricultural crops	10
2.6 Endophytic diazotrophic bacteria (EDB)	58 ii) [h
2.7 Arbuscular mycorrhizal fungi (AMF)	Jniversit

TABLE OF CONTENTS (CONTINUED)

					Page	
CHAPTER 3 Identification	on and efficiency of	arbuscul	ar mycorrh	izal fungi		
for growth	promotion of Curci	uma alism	atifolia Ga	gnep.	26	
3.1 Introduction	on				26	
3.2 Materials	and methods				27	
3.3 Results					30	
3.4 Discussion	1 4				36	
3.5 Conclusio	n				40	
CHAPTER 4 Identification	n of endophytic bac	teria assoc	ciated with	N ₂ fixation	n	
and IAA syntl	nesis as growth pror	noters in (Curcuma al	ismatifolia	a	
Gagnep.					41	
4.1 Introduction	on				41	
4.2 Materials	and methods				42	
4.3 Results					44	
4.4 Discussion	1				52	
4.4 Discussion 4.5 Conclusio	BNC				57	

TABLE OF CONTENTS (CONTINUED)

	Page
CHAPTER 5 Effect of fertilizer application combining with AMF mixed with	
EDB on growth, nutrient uptake and level of IAA in Curcuma	
alismatifolia Gagnep.	58
5.1 Introduction	58
5.2 Materials and methods	59
5.3 Results	61
5.4 Discussion	85
5.5 Conclusion	92
CHAPTER 6 General discussion	93
REFERENCES	99
CURRICULUM VITAE	127

LIST OF TABLES

Table		Page
3.1	Effect of inoculated plants with AMF on plant height and	
	number of leaves of Curcuma plantlets	34
3.2	Effects of AMF inoculation on leaf area, diameter of rhizome,	
	fresh and dry weight, % infection of <i>C. alismatifolia</i> planlets.	35
5 3 4.1	Nitrogen fixation rate (nmolC ₂ H ₄ /10 ⁶ cells/hr) of different	
	isolates of EDB when stored in 40% glycerol at different periods.	45
	periods.	
4.2	IAA synthesis rate (nl/µg protein) of EDB when stored in 40%	
	glycerol at different periods.	45
4.3	Plant height (cm), number of leaves and plant weight (g) of	
	inoculated plantlets compared with uninoculated plants (control)	46
	(control)	40
4.4	Diameter of rhizome (cm), total leaf area (cm ²), chlorophyll	
	content and N concentration (mg/g DW) of inoculated	47
	plantlets compared with uninoculated plants (control)	47
5.1	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on growth and leaf diffusible IAA (pg/leaf/20h) of <i>C. alismatifolia</i> at 12 WAP.	64

Table		Page
5.2	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on growth and leaf diffusible IAA	
	(pg/leaf/20h) of C. alismatifolia at 12 WAP.	64
5.3	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on inflorescence quality of C. alismatifolia at	
	12 WAP.	66
5.4	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on inflorescence quality of C.	
	alismatifolia at 12 WAP.	67
5.5	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on inflorescence fresh weight of <i>C</i> .	
	alismatifolia at 12 WAP.	68
	1/1 - R3'//	
5.6	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on fresh weight of <i>C. alismatifolia</i> at	
	12 WAP.	69
		9
5.7	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on dry weight of <i>C. alismatifolia</i> at 12 WAP.	70

Table		Page
5.8	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on dry weight of C. alismatifolia at	
	12 WAP.	70
5.9	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on nitrogen concentration of C. alismatifolia	
	at 12 WAP.	72
5.10	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on nitrogen concentration of C.	
	alismatifolia at 12 WAP.	72
5.11	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on phosphorus concentration of C.	
	alismatifolia at 12 WAP.	74
5.12	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on phosphorus concentration of <i>C</i> .	
	alismatifolia at 12 WAP.	74
5.13	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on potassium concentration of C.	
	alismatifolia at 12 WAP.	versity

Table		Page
5.14	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on potassium concentration of C.	
	alismatifolia at 12 WAP.	76
5.15	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on quality of rhizome of C. alismatifolia at	
	harvest stage.	78
5.16	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on quality of rhizome of C.	
	alismatifolia at harvest stage.	79
5.17	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on fresh and dry weight of rhizome and	
	storage roots of <i>C. alismatifolia</i> at harvest stage.	80
5.18	The combination of fertilizer rates and AMF mixed with or	
	without EDB treatments on fresh and dry weight of rhizome	
	and storage roots of <i>C. alismatifolia</i> at harvest stage.	81
5.19	Effects of fertilizer rates and AMF mixed with or without	
	EDB treatments on nitrogen, phosphorus and potassium	
		84

Table		Page
5.20	The combination of fertilizer rates and AMF mixed with or without EDB treatments on nitrogen, phosphorus and	
	potassium concentrations of <i>C. alismatifolia</i> at harvest stage.	85

xix

LIST OF FIGURES

Figure		Page	
2.1	Morphology of Curcuma alismatifolia Gagnep.	6	
2.2	The two component structures of nitrogenase enzyme	13	
2.3	Characteristics of AMF	17	
2.4	Characterization of hyphae AMF	18	
2.5	Classification of Glomeromycota	20	
2.6	Structure of the ribosomal gene (rDNA) unit contains the 18S,	22	
7	5.8S and 28S genes The warmhala are of AME instant of form this only are sail of G	22	
3.1	The morphology of AMF isolated from rhizosphere soil of <i>C. alismatifolia</i>	33	
3.2	Nested PCR amplification of AMF isolate No. 1 (lane 1), isolate No. 2 (lane 2), isolate No. 3 (lane 3) and λEcoT marker		
	(M)	36	
3.3	Phylogenetic relationships of AMF isolate No.3.	36	
4.1	The <i>Curcuma</i> inoculated plantlets with EDB of each isolate and control when grown for 2 months	46	

LIST OF FIGURES (CONTINUED)

Figure		Page
	of EDB in <i>Curcuma</i> plantlets. (A and B) ECL101 in (C and D) ECS 202 in rhizome and root, (E and F)	
	in rhizome and root, (G and H) ECS 204 in rhizome	
and leaf ba		49
4.3 PCR amp	lification of EDB; ECL101 (lane 1), ECS202 (lane	
2), ECS20	3 (lane 3), ECS204 (lane 4) and λEcoT marker (M)	50
4.4 Phylogene	etic relationships of the gram-negative endophytic	
bacterial is	solate ECL101 and ECS202	50
4.5 Phylogene	etic relationships of the gram positive of endophytic	
		51
5.1 Effects o	of fertilizer rates and AMF mixed with EDB	
		62
5.2 Effects o	f fertilizer rates and AMF mixed with EDB	
treatments	s on growth of C. alismatifolia at 12 WAP	
(flowering	g stage)	63
5.3 Effects o	f fertilizer rates and AMF mixed with EDB	
	s on quality of inflorescence of <i>C. alismatifolia</i> at 12 wering stage)	66

LIST OF FIGURES (CONTINUED)

Figure		Page
5.4	Effects of fertilizer rates and AMF mixed with EDB treatments on quality of rhizome of <i>C. alismatifolia</i> at 12	
	WAP (flowering stage)	78

ABBREVIATIONS AND SYMBOLS

etc. Et cetera Gram or gravity Nitrogen Phosphorus Potassium K EDB Endophytic diazotrophic bacteria Arbuscular mycorrhizal fungi AMF Percent % Micromole μmol C_2H_2 Acetylene Hour hr Indole acetic acid **IAA** Milliliter

C. alismatifolia Gagnep.

 $^{\rm o}C$

Microgram

Degree of Celsius

Curcuma alismatifolia Gagnep.

xxiii

WAP	1010	Weeks after planting
cm	HE1	Centimeter
MS medium	E 0,0	Murashige and Skoog medium
mg/L		Milligram per liter
BAP		Benzalamino puirine
L	=	Liter
e.g.	= 3	Exempli gratia (for example)
i.e.	=	Id est (it is or that is)
VAM	=	Vesicular arbuscular mycorrhiza
UV		Ultraviolet
РН	= 60000	Potential of hydrogen ion
N ₂	=	Dinitrogen
Mo	_UN	Molybdenum
Fe	=	Iiron
SSUM	3ne	Sulphur
ATP	Chia	Adenosine triphosphate
${\rm Mg_2}^+$	₹ s	Magnesium ion
ADP	=	Adenosine diphosphate

H^{+}	=	Hydrogen iron
N ₂ H ₂	3181	Diazene
N ₂ H ₄	FOI	Hydrazine
NH ₃		Ammonia
H ₂ O		Water
H_2	= 8	Hydrogen gas
¹⁵ N	= 3	Radioactive isotope of nitrogen
ABA	=	Acetylene reduction assays
λ	=	Lamda
$\mathrm{C_2H_2}$	=	Ethylene
e ⁻	= 0000	Electron
16S rDNA	=	16S ribosomal deoxyribonucleic acid
RNA	UN	Ribonucleic acid
LSU	=	Large subunit
SSU	9n8	Small subunit
mRNA	This	Messenger ribonucleic acid
rRNA		Ribosomal ribonucleic acid
DNA	T S	Deoxyribonucleic acid

ATPase	=	Adenosine triphosphate synthase
ITS	FIEL.	Intragenic transcribe spacer
IGS	£0,1	Intergenic spacer
PCR		Polymerase chain reaction
Ca	- 8	Calcium
Mg	=	Magnesium
Cu	= 6	Cupper
Mn	=	Manganese
Zn	=	Zinc
ST	=	Saithong National Park
PH	= 6000	Paa Hinngarm National Park
BL	=	Chiayaphoom province
DD	4 = U 1	San Sai district farmers
YK	=	Yangkram subdistrict
PVLG	3118	Polyvinyl alcohol-lactic acid-glycerol
cv. htC	[−] Chia	Cultivar
MAP	Ŧ 6	Months after planting
CRD	=	Completely Randomized Design

USA =	United State of America
LSD =	Least significant difference
μ1 =	Microliter
dH_2O =	De-ionized water
sec =	Seconds
TM =	Trademark
Min =	Minute
V =	Volt
rpm =	Revolutions per minute
SOC medium =	Super optimal broth medium
YT medium =	Yeast extract and tryptone medium
μm =	Micrometer
kb =	Kilo base
ns =	Not significantly different
mg =	Milligram
KH_2PO_4 =	Potassium Dihydrogen Phosphate
$K_2SO_4 =$	Potassium sulfate
$MgSO_4.7H_2O =$	Magnesium sulphate heptahydate

CaCl ₂ .2H ₂ O	=	Calcium Chloride Dihydrate
Fe-citrate	1918	Lron-citrate
MnSO ₄ .H ₂ O	EQ	Manganese sulphate monohydrat
H_3BO_4		Boric acid
ZnSO ₄ .7H ₂ O	- 8	Zinc sulfate heptahydrate
CuSO ₄ .5H ₂ O	=	Copper sulphate pentahydrate
CoSO ₄ .7H ₂ O		Cobalt sulfate heptahydrate
$Na_2MoO_4.2H_2O$	=	Sodium molybdate dihydrate
SEM	=	Scanning electron microscopy
v/v	=	Volume in volume
w/v	= 676	Weight in volume

Osmium tetroxide

kV = Kilovolt

 O_2O_4

nmole = Nanomole

nl = Nanoliter

cm² = Square centimeter

RH = Relative humidity

pg = Pictogram

xxviii

Fresh weigh FW Dry weigh DW kg/ha Kilogram per hectare Year Potassium ion NO_3 Nitrate ion Nitrogen fixation gene nif gene Guanine G Cytosine Thymine C MAI Adenine