TABLE OF CONTENTS

9781818 B	
	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (English)	vi
ABSTRACT (Thai)	х
TABLE OF CONTENTS	xiv
LIST OF TABLES	xix
LIST OF FIGURES	xxi
ABBRIVIATIONS AND SYMBOLS	xxix
GENERAL INTRODUCTION	1
State of current research	3
Study Objectives	6
REVIEW OF LITERATURE	8
The global warming and terrestrial ecosystem	8
Net ecosystem carbon exchange (<i>NEE</i>)	10
Copyright by Chiang Mai Universion	10 11
Drought stress effect on peanut growth P C C C C C	13
Eddy-covariance method	16
Eddy- covariance method in theory	19

	Page
Eddy covariance method in practice	21
Nighttime problems	21
Coordinate rotation	24
Density fluctuation	24
Data acquisition and processing	25
Spike detection	25
Planar fit method	26
Linear detrending	28
Corrections for changes in air density	29
Soil CO ₂ efflux or Soil respiration	30
Controlling factors	31
Methods of measurements and estimations	33
Soil gaseous diffusion coefficient	35
Soil CO_2 gradient method	38
EXPERIMENT 1 EDDY-COVARIANCE METHOD	41
Sub-experiment 1 Influence of drought stress on the diurnal	42
exchange of mass and energy between the atmosphere and a	KIJ
Copyright Introduction by Chiang Mai University	
A Materials and Methods T E S E F V	e ₄₆
Site description	46
Experimental measurements and data processing	47

J	Page
Data Analysis	51
Results and Discussion	53
Seasonal variation in environmental conditions and leaf area	53
index	
Diurnal patterns of the partitioning of available energy	58
Diurnal patterns of CO ₂ and H ₂ O exchange	64
Sub-experiment 2 Influence of drought on daytime net ecosystem	75
CO ₂ exchange of a field grown peanut	
Introduction	76
Materials and Methods	78
Data Analysis	78
Results and Discussion	79
Responses of daytime NEE to PAR	79
Responses of daytime NEE to water stress	85
EXPERIMENT 2 SOIL CO2 GRADIENT METHOD	92
Sub-experiment 1 Assessment of the soil CO ₂ gradient method for	93
soil CO ₂ efflux measurements	í IJ
Introduction by Chiang Mai Univers	94 97
All Site description hts reserve	97
Soil CO ₂ gradient method	98
Field measurements	98

	Page
Soil CO_2 efflux calculation	100
Soil CO ₂ efflux measurements by Li-8100 non-steady state	102
chamber system	
Environmental measurements	104
Data analysis	104
Results and Discussion	107
Soil CO ₂ efflux	107
Diurnal variation of soil CO ₂ profile in measurements	115
Soil CO ₂ efflux and its correlation with soil temperature and soil	116
moisture	
Sub-experiment 2 The effect of drying and rapid rewetting of soil	124
on CO ₂ efflux	
Introduction	125
Materials and Methods	127
Site description	127
Soil CO ₂ gradient method	127
A J A N Field measurements NJ A J B J J B J J	127
Soil CO ₂ efflux calculation Data Analysis	129 51 129
A Results and Discussion TS TESETV	e ₁₃₁
Responses of soil CO ₂ efflux to drying and rapid rewetting of	131

soil

	Page
Effect of drying and rapid rewetting of soil on the sensitivity of	134
soil CO ₂ efflux to soil temperature and soil water content	
SUMMARY AND CONCLUSIONS	138
REFERENCES	144
APPENDICES	178
APPENDIX A Vaisala CARBOCAP®Carbon Dioxide Probe	179
GMP343	
APPENDIX B Li-8100 System Automated Soil CO ₂ Flux	183
Measurements	
CURRICULUM VITAE	184
AI UNIVERSY	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xviii

LIST OF TABLES

xix

Table

3.1

Values of the parameters describing features of the Michaelis-Menten function responses of daytime net ecosystem CO_2 exchange (*NEE*) to incident

photosynthetically active radiation (PAR) (Equation 3.1)

4.1 Summary of maximum, minimum, and average of the 108 half-hourly soil CO₂ efflux determined with the gradient method and the mean of soil CO₂ efflux measurements across all five collars within 30-min period obtained using the Li-8100 soil chamber on DOY 265, 269, 271, 272, 273, 277, 278, and 282 in 2006. Statistical parameters describe the linear regression relationships between soil CO₂ efflux from Li-8100 chamber and estimated CO₂ efflux by the gradient method with different gas diffusivity model [Equation 4.5 - 4.10].

81

Page

2/57/03/

Table

4.2	Fit of equation $F_s(T_s) = ae^{bT_s}$ to access the relationship	117
	between the half-hourly soil CO ₂ efflux determined with	
	the gradient method using the Moldrup et al. (1997) model	
	to obtain ξ and soil temperature and	
8	$F_{s,E}/F_s(T_s) = c + dSWC$ to access the relationship between	
6	the half-hourly temperature-normalized efflux and soil	
302	water content on DOY 265, 269, 271, 272, 273, 277, 278,	
	and 282 in 2006.	
Chie	The state of the s	
	UNIVE	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

	ુ ગશાધાર્ણ	
Figure	20 D.D 22 an	Page
1.1	Overview of the CO ₂ fluxes resulting in net ecosystem	10
G	exchange NEE.	
1.2	Conceptual representation of mean and fluctuation time series	18
500	of a turbulent quantity like wind velocity, temperature, water	
202	vapor or carbon dioxide.	
1.3	Definitions of the tilt angle α , β , and γ for the xyz convention.	28
Ę	The original axes are x , y , and z , the intermediate axes are x_{I} ,	
	y_I , and z_I , and the final axes are x' , y' , and z' (from Wilczak <i>et</i>	
	al., 2001).	
2.1	A photo of the experimental site in 2007 in a rainfed peanut	46
	field in Unadilla, Georgia, USA.	
2.2	Photo of the eddy-covariance tower consisting of the three-	48
adar	dimensional sonic anemometer and the fast response open-path	μŊ
Copyri	CO ₂ /H ₂ O infrared gas analyzer with the net radiometer on the	sity
AII	top of tower. The system was power by two 12 VDC deep	e d
	cycle batteries that were charge by 120 W solar panels.	

Fi	gure	Page
2.	Photo of the ET106 (Campbell Scientific, Logan, Utah)	50
	automatic weather station.	
2.	Daily averages of (a) air temperature, canopy temperature, and	56
	soil temperature at the depth of 2 cm, (b) soil water content	
	(SWC) at the depth of 2-5 cm and the daily total precipitation	
	(<i>PTT</i>) over the course of the study. DOY means days of year.	
2.	Daily total (a) solar radiation and (b) daily average of vapor	57
	pressure deficit (VPD) over the course of the study. DOY	
	means days of year.	
2.	The trends in leaf area index (LAI) \pm standard deviation over	58
	the course of the study.	
2.	Diurnal trends in (a) air temperature, canopy temperature, and	61
	vapor pressure deficit (VPD) and (b) net radiation (Rn), latent	
	heat flux (λE) and sensible heat flux (<i>H</i>). Data are half-hourly	
	average over the selected 5 days during DOY 210 to 216.	
	Vertical bars indicate standard deviations.	
a 2 ² .	Diurnal trends in (a) air temperature, canopy temperature, and	62
Сор	vapor pressure deficit (<i>VPD</i>) and (b) net radiation (<i>Rn</i>), latent heat flux (λE) and sensible heat flux (<i>H</i>). Data are half-hourly	ity
ΑΙ	average over the selected 5 days during DOY 222 to 227.	e C
	Vertical bars indicate standard deviations.	

Figure		Page
2.9	Diurnal trends in (a) air temperature, canopy temperature, and	63
	vapor pressure deficit (VPD) and (b) net radiation (Rn), latent	
	heat flux (λE) and sensible heat flux (<i>H</i>). Data are half-hourly	
	average over the selected 5 days during DOY 248 to 254.	
	Vertical bars indicate standard deviations.	
2.10	Diurnal trends in negative daytime net ecosystem CO ₂	67
6	exchange (- NEE) and solar radiation (Rg). Data are half-hourly	
-372	average over the selected 5 days during (a) DOY 210 to 216,	
20	(b) DOY 222 to 227, and (c) DOY 248 to 254. Vertical bars	
	indicate standard deviations.	
2.11	The relationship between daytime net ecosystem CO ₂	68
	exchange (NEE) and solar radiation (Rg) on the selected 5 days	
	during (a) DOY 210 to 216, (b) DOY 222 to 227, and (c) DOY	
	248 to 254. A rectangular hyperbola was fitted to explain the	
	relationship between daytime NEE and Rg.	
2.12	Diurnal trends in evapotraspiration (E) and ecosystem water	69
ິລິບສີ່າ	use efficiency (EWUE). Data are half-hourly average over the	КIJ
Convri	selected 5 days during (a) DOY 210 to 216, (b) DOY 222 to	
	227, and (c) DOY 248 to 254. Vertical bars indicate standard	
	deviations. B N T S I E S E I V O	ed

Figu	re	Page
2.13	The relationship between evapotranspiration (E) and solar	70
	radiation (Rg) on the selected 5 days during (a) DOY 210 to	
	216, (b) DOY 222 to 227, and (c) DOY 248 to 254. A linear	
	regression was fitted to explain the relationship between E and	
	Rg.	
2.14	(a) Diurnal trends in surface conductance (g_s) and decoupling	71
	coefficient (Ω). Data are half-hourly average over the selected	
	5 days during (a) DOY 210 to 216, (b) DOY 222 to 227, and	
5	(c) DOY 248 to 254. Vertical bars indicate standard	
	deviations.	
3.1	Example of light response curves at different growth stages	80
	during the study period. The Michaelis-Menten equation as	
	described in Equation 3.1 was used to fit the data, and the	
	regression coefficients are presented in Table 3.1.	
3.2	Relationship between net ecosystem CO_2 exchange (<i>NEE</i>) and	84
	photosynthetically active radiation (PAR) under (a) different	
ลิขส	air temperature (T_a), (b) different vapor pressure deficit (<i>VPD</i>),	Иl
Сору	and (c) under different soil water content (<i>SWC</i>) during the peak growing stages (DOY 201-240). <i>NEE</i> data were averaged	sity
	with <i>PAR</i> bins. Bin width is 200 μ mol photons m ⁻² s ⁻¹ . Bars	ec
	indicate standard errors.	

Figure

Fig	gure	Page
3.3	Diurnal variations of negative net ecosystem CO ₂ exchange (-	87
	<i>NEE</i>), surface conductance (g_s) and correspondingly	
	environmental factors of air temperature (T_a) and vapor	
	pressure deficit (VPD) on clear days under stress-free	
	condition (a and b, measured on DOY 210, 212, 213, 214, and	
	216) and water stress condition (c and d, measured on DOY	
	220, 222, 225, 226, and 227). Bars indicate standard errors.	
3.4	Response of half-hour surface conductance (g_s) to vapor	88
~	pressure deficit (VPD) during water stress condition (measured	
	on DOY 220, 222, 225, 226, and 227) when <i>PAR</i> > 1000 µmol	
	photons m ⁻² s ⁻¹ .	
3.5	The relationship between photosynthetically active radiation	90
	(PAR) and net ecosystem CO ₂ exchange (<i>NEE</i>) on clear days	
	under (a) stress-free condition (measured on DOY 210, 212,	
	213, 214, and 216) and (b) water stress condition (measured on	
	DOY 220, 222, 225, 226, and 227). The arrows indicate the	
ລີບສ	direction of the hysteresis effect.	Кl
4.1	Photo of the study site in rainfed peanut at the Southwest	98
Cop	Georgia Research and Education Center, Plains, Georgia,	SILY
ΑΙ	I USA. I ghts reserve	ec

A schematic of the system for measuring soil $\ensuremath{\mathrm{CO}}_2$ 100 4.2 concentration, soil temperature and soil water content profiles.

Figure		Page
4.3	The photo of the comparison of the soil CO ₂ gradient method	103
	and the Li-8100 soil chamber in a 3x3 m sampling plot.	
4.4	Linear relationship between the half-hourly mean estimated	110
	CO_2 efflux by the gradient method and the mean of soil CO_2	
	efflux measurements across five collars obtained by Li-8100	
3	chamber during the same 30-min periods. Soil gas diffusivity	
6	in the gradient method was estimated with two approaches	
-302	based on averaged soil profile water content and based on	
	harmonic averaged diffusivity. The two straight lines are fitted	
	regression lines.	
4.5	Mean diurnal variations and their standard deviation on DOY	114
	265, 269, 271, 272, 273, 277, 278, and 282 in 2006. (a) Soil	
	CO ₂ efflux determined with the gradient method using the	
	Moldrup <i>et al.</i> (1997) model to obtain ξ (closed circles) and	
	the mean of soil CO_2 efflux measurements across all five	
	collars within 30-min period obtained using the Li-8100 soil	
ลิขสิท	chamber (open circles); (b) soil CO ₂ concentration at depths of	หม
Convri	0.02 and 0.12 m; (c) soil temperature at depths of 0.02, 0.05,	sitv
	0.12, and 0.30 m; (d) volumetric soil water content at depths of	
	0.02 and 0.12 m (ensemble average for each half-hour).	ea

xxvi

Figure

Page

4.6 Relationship between the half-hourly estimated soil CO ₂ efflux		118
	by the gradient method using the Moldrup et al. (1997) model	
	to obtain ξ and soil temperature at 0.05 m depth on days DOY	
	265, 269, 271, 272, 273, 277, 278, and 282 in 2006. The non-	
	linear regression curve was fitted with Equation 4.12.	
4.7	Relationship between soil CO ₂ efflux determined with the	120
	gradient method using the Moldrup et al. (1997) model to	
	obtain ξ and soil temperature at the depths of (a) 0.02, (b)	
220	0.05, (c) 0.12, and (d) 0.30 m for measurements made on DOY	
	265, 269, 271, 272, 273, 277, 278, and 282 in 2006 (ensemble	
	average for each half-hour). The arrows indicate the direction	
	of the hysteresis effect. The numbers indicate the mean	
	absolute residual. Residual values calculated as the difference	
	between measured soil CO ₂ efflux and modeled (Equation	
	4.12) values were used to assess the magnitude of hysteresis.	
4.8	Relationship between the half-hourly temperature-normalized	122
ลิขสา	efflux and soil water content at 0.12 m depth on DOY 265,	1 IJ
Copyr	269, 271, 272, 273, 277, 278, and 282 in 2006. The linear	itv
AII	regression curved was fitted with Equation 4.14.	d

xxviii

	Figure		Page
	5.1	Daily averages of soil water content (SWC) at the depth of 2-5	128
		cm and the daily total precipitation (PTT) over the course of	
		the study. DOY means days of year. Horizontal bar shows the	
		observation period.	
	5.2	Diurnal pattern of half-hourly change in (a) soil temperature at	132
	8	the depth of 0.02 and 0.05 m, (b) soil water content (SWC) at	
	6	the depth of 0.02 and 0.02-0.05 m and the half-hourly total	
	-37%	precipitation (<i>PTT</i>), (c) soil respiration (F_s) and soil diffusivity	
	200	(D_s) , and (d) soil CO ₂ concentration at the depth of 0.02 and	
		0.05 m during DOY 215 – 229.	
	5.3	Relationship between the half-hourly soil CO ₂ efflux and (a)	136
		soil temperature at 0.02 m depth and (b) soil water content at	
		0.02-0.05 m depth during drying period (DOY 216-224) and	
		rewetting period (after a 5.8 mm rain event on DOY 224). The	
		non-linear regression curves were fitted with Equation 5.2 and	
		5.4 for soil temperature and soil water content, respectively.	
ົລີປ	5.4	Relationship between the half-hourly soil CO ₂ efflux and soil	137
temperature at 0.02 m depth under different soil water content (<i>SWC</i>). The non-linear regression curves were fitted with		temperature at 0.02 m depth under different soil water content (<i>SWC</i>). The non-linear regression curves were fitted with	sity
AI		Equation 5.2. The temperature dependence of soil CO_2 efflux	e d
		on soil temperature expressed by Q_{I0} was calculated according	
		to Equation 5.3.	

ABBRIVIATIONS AND SYMBOLS

		ู กุมยนติ	
	a, b, c, d, f	Regression coefficients	62,
	b_0, b_1, b_2	Regression coefficients	. 31
	c, C	CO ₂ concentration	ppm, mmol m ⁻³
	C_p	Specific heat of air	J kg ⁻¹ K ⁻¹
	CO ₂	Carbon dioxide	325
	D	Molecular diffusion	THE A
	D_a	CO ₂ diffusion coefficient in free air	$m^2 s^{-1}$
	D_{a0}	Reference value of the CO ₂ diffusion	$m^2 s^{-1}$
	15	coefficient in free air at 20 °C or 293.15 K	
	D_s	CO ₂ diffusion coefficient in soil	$m^2 s^{-1}$
	D_{sk}	Soil gas diffusion coefficient for the discrete	$m^2 s^{-1}$
		layer k	
•	DOY	Day of year	a ? '
36	E	Ecosystem evapotranspiration	mmol H ₂ O m ⁻² s ⁻¹
EC Eddy-co		Eddy-covariance Chiang Ma	i University
Λ	EWUE	Ecosystem water use efficiency	µmol CO2 mmol H2O ⁻¹
A	F	Vertical flux density	beiveu
	F_c	vertical flux densities of CO ₂	
	F_s	Soil CO ₂ efflux or soil respiration	μ mol m ⁻² s ⁻¹

xxix

$F_{s,E}$	The temperature-normalized efflux	
Fz	Soil CO_2 efflux at depth z	μ mol m ⁻² s ⁻¹
g_a	Air conductance	m s-1
g_s	Surface conductance	m s ⁻¹
GPP	Gross primary production	μ mol m ⁻² s ⁻¹
Н	Sensible heat flux	W m ⁻²
H ₂ O	Water	3
i	Index variable	
I with	Regression intercept	252
IPCC	Intergovernmental Panel on Climate Change	
k	Soil layer	4
LAI	Leaf area index	$m^2 m^{-2}$
m	Constant values	
n	Number of layers within the entire soil	\mathcal{S}
	profile	
N, N _i	Number of values	
NEE	Net ecosystem carbon exchange or CO ₂ flux	μ mol m ⁻² s ⁻¹
NEE sat	Saturation value of <i>NEE</i> at an infinite light	μ mol CO ₂ m ⁻² s ⁻¹
Copyrig A	level not significant Net ecosystem productivity	
Po	Reference value of air pressure	Pa
т _U D / D	Photosynthetically active radiation	$umal$ photons $m^{-2} s^{-1}$
ΓΑΛ	i notosynthetically active radiation	µmor photons m s

	POM	Polyoxymethylene	
	PTFE	Polytetrafluoroethylene	
	PTT	Precipitation	mm
	q	Water vapor density	kg m ⁻³
	Q10	Temperature sensitivity of soil CO ₂ efflux	5
		or magnitude of change in respiration rate	331
	8	for a 10 K change in temperature	3
	R _e	Ecosystem respiration	μ mol m ⁻² s ⁻¹
	Rn	Net radiation	W m ⁻²
	Rg	Solar radiation	W m ⁻²
	S	Percentage of mineral soil with particle size	
	E E	> 2 µm	6
	S	Regression slope	
	S	Source or sink	
	SWC	Soil water content	$m^3 m^{-3}$
	SWC_k	Soil water content at soil layer k	$m^3 m^{-3}$
	t	time	s
ິລີເ	Δt	Time period 333	เชียงใหม
Co	T	Temperature	°C, K
	T_0	Reference value of temperature	°C, K
Α	T_a	Air temperature US I C	s _{°c} erved
	T_s	Soil temperature	°C
	и	Longitudinal wind component	m s ⁻¹

xxxii

u	Mean wind speed	$m s^{-1}$
u*	Friction velocity	$m s^{-1}$
UNFCCC	United Nations Framework Convention on	
	Climate Change	
ν	Lateral wind component	m s ⁻¹
VPD	Vapor pressure deficit	hPa
w	Vertical wind component	m s ⁻¹
x	Any property of interest	7/2/
x sile	Distance in longitudinal wind direction	m
Xt	Instantaneous mean	205
y	Any property of interest	*
y	Distance in lateral wind direction	m
Z	Height above ground or depth	m
Z_m	Measurement height	m
Δ	The rate of change of saturation vapor	kPa K ⁻¹
	pressure with temperature	
Ω	decoupling coefficient	
ິສູບສົກ	The apparent quantum yield or the initial	μ mol CO ₂ μ mol ⁻¹ photons
Copyrig	slope of the light response curve Rotation angle for planar fit	i University
$\mathbf{A} \mid_{\boldsymbol{\beta}} \mathbf{I}$	Bowen ratio hts res	served
β	Roll angle for planar fit	0
γ	Pyschrometric constant	

xxxiii

γ	Yaw angle for planar fit	0
З	Soil air-filled porosity	$m^{3} m^{-3}$
λ	Latent heat of vaporization	J kg ⁻¹
λE	Latent heat flux	W m ⁻²
μ	The ratio of molecular weights of dry air	5
	and water vapor	.30
ξ	Gas tortuosity factor or the relative gas	5
6	diffusion coefficient	7/2/
P	Density of moist air	kg m ⁻³
$ ho_a$	Density of dry air	kg m ⁻³
$ ho_b$	Soil bulk density	g cm ⁻³
$ ho_c$	Density of CO ₂	kg m ⁻³
$ ho_m$	Particle density of mineral soil	g cm ⁻³
$ ho_s$	Scalar density	
$ ho_{v}$	Density of water vapor	kg m ⁻³
σ	The ratio of water vapor and dry air	
	densities	
a van	Soil total porosity	
Copyrig	ht [©] by Chiang Ma	i University
	rights rea	served