TABLE OF CONTENTS

ACKNOWLEDGEMENTS	111
ABSTRACT(Thai)	lV
ABSTRACT (English)	VIII
TABLE OF CONTENTS	Xl
LIST OF TABLES	XIX
LIST OF FIGURES	XXI
LIST OF APPENDIX TABLE	XXIII
ACRONYMS ABBREVIATIONS AND DEFINITIONS	XXV
INTRODUCTION	1
LITERATURE REVIEW	6
The Origin of Vegetable Soybean	6
Symbiotic Nitrogen Fixation in Vegetable Soybeans and Nodulation	7
Green Manure	11
Nitrogen Isotope	15
บสิทธิ์มหาวิทยาลัยเชียงใ	19

EXPERIMENT I : Growth and N ₂ Fixation Efficiency of	
Vegetable Soybean	21
Objectives and a left by a	21
Materials and Methods	21
Results and Discussion	24
Biomass and yield of vegetable soybean	24
Nodulation and N ₂ -fixation	26
Contribution of nitrogen in vegetable soybean plant from different sources	28
EXPERIMENT II : Effect of Vegetable Soybean Decomposition on Quantity	
of N-uptake in Kale (Brassica oleracea var.alboglabra)	32
Objectives	32
Materials and Methods	32
Results and Discussion	34
Nitrogen mineralization	34
The growth variation of fresh weight of kale	40
Nitrogen accumulation and nitrogen translocation	42

EXPERIMENT III : Effect of Vegetable Soybean Biomass Decomposition on	
Yield of Kale 47	7
Objectives 47	7
Materials and Methods 47	7
Results and Discussion 49	9
Nitrogen mineralization in soil 49	9
Yield of kale 56	5
Relative growth rate 61	1
GENERAL CONCLUSION 63	3
REFERENCES 67	7
APPENDICES 78	3
Appendix1 Analysis of variance of inorganic-N (kg/rai) mineralization from	
vegetable soybean residues incorporated into the soil from 1-6	
weeks 79	9
Appendix 1.1 Analysis of variance of inorganic-N (kg/rai)	
mineralization from vegetable soybean residue	
within the 1 st week 79	9
Appendix1.2 Analysis of variance of inorganic-N (kg/rai)	
mineralization from vegetable soybean residue	
within the 2^{nd} week 79)

EXPERIMENT III : Effect of Vegetable Soybean Biomass Decomposition on

Appendix 1.3 Analysis of variance of inorganic-N (kg/rai)	
mineralization from vegetable soybean residue within the	
3 rd week	80
Appendix 1.4 Analysis of variance of inorganic-N (kg/rai)	
mineralization from vegetable soybean residue	
within the 4 th week	80
Appendix 1.5 Analysis of variance of inorganic-N (kg/rai)	
mineralization from vegetable soybean residue	
within the 5 th week	81
Appendix 1.6 Analysis of variance of inorganic-N (kg/rai)	
mineralization from vegetable soybean residue	
within the 6 th week	81
Appendix2 Analysis of variance of NH_4^+ -N mineralization from vegetable	
soybean residue incorporateed into the soil from 1-6 weeks	82
Appendix 2.1 Analysis of variance of NH4 ⁺ -N (kg/rai) mineralization	
from vegetable soybean residue within the 1 st week	82
Appendix 2.2 Analysis of variance of NH ₄ ⁺ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 2^{nd} week	82

	Page
Appendix 2.3 Analysis of variance of NH ₄ ⁺ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 3 rd week	83
Appendix 2.4 Analysis of variance of NH_4^+ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 4 th week	83
Appendix 2.5 Analysis of variance of NH ₄ ⁺ -N (kg/rai)	
mineralization from vegetable soybean	
residue within the 5 th week	84
Appendix 2.6 Analysis of variance of NH4 ⁺ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 6 th week	84
Appendix 3 Analysis of variance of NO ₃ ⁻ -N (kg/rai) mineralization from	
vegetable soybean residue incorporated into the soil from	
1-6 weeks	85
Appendix 3.1 Analysis of variance of NO ₃ ⁻ -N (kg/rai)	
mineralization from vegetable soybean residue within	
A l l st week s reserve	85

Appendix 3.2 Analysis of variance of NO ₃ ⁻ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 2 nd week	85
Appendix 3.3 Analysis of variance of NO ₃ ⁻ N (kg/rai)	
mineralization from vegetable soybean residue	
within the 3 rd week	86
Appendix 3.4 Analysis of variance of NO ₃ ⁻ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 4 th week	86
Appendix 3.5 Analysis of variance of NO ₃ ⁻ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 5 th week	87
Appendix 3.6 Analysis of variance of NO ₃ ⁻ -N (kg/rai)	
mineralization from vegetable soybean residue	
within the 6^{th} week	87
Appendix 4 Analysis of variance of accumulation of fresh weight (kg/rai) of	
kale from 14 days to 48 days after planting	88
Appendix 4.1 Analysis of variance of kale fresh weight (kg/rai)	
after planting 14 days(1 st week)4 treatments	88

Aŗ	opendix 4.2	Analysis of variance of kale fresh weight (kg/rai)	
		after planting 21 days(2 nd week) 4 treatments	89
Ap	opendix 4.3	Analysis of variance of kale fresh weight (kg/rai)	
		after planting 28 days(3 rd week) 4 treatments	90
Ar	opendix 4.4	Analysis of variance of kale fresh weight (kg/rai)	
		after planting 35 days(4 th week) 4 treatments	91
Ap	opendix 4.5	Analysis of variance of kale fresh weight (kg/rai)	
		after planting 42 days(5 th week) 4 treatments	91
Aŗ	opendix 4.6	Analysis of variance of kale fresh weight (kg/rai)	
		after planting 48 days(6^{th} week) 4 treatments	92
Appendix 5 A	Analysis of v	variance of accumulation of fresh weight (kg/rai) of	
k	ale 6 weeks	from 14 days to 48 days after planting	93
and	Appendix 5.1	Analysis of variance of kale fresh weight (kg/rai)	
		after planting 48 days(1 st Treatment) 6 weeks	93
pyrigr	Appendix 5.2	2 Analysis of variance of kale fresh weight (Kg/rai)	
		after planting 48 days(2 nd Treatment) 6 weeks	e C ₉₄
А	appendix 5.3	Analysis of variance of kale fresh weight (kg/rai)	
	at	fter planting 48 days(3 rd Treatment) 6 weeks	95

Ap	opendix 5.4 A	nalysis of variance of kale fresh weight (kg/rai)	
	at	fter planting 48 days(4 th Treatment) 6 weeks	96
Appendix 6	Analysis of va	ariance of nitrogen content in terms of %N,	
	%N abundance	e and %N atom excess in kale plant grown on soil	
i	incorporated w	vith different nitrogen fertilize soybean manures	97
	Appendix 6.1	Analysis of variance of %total nitrogen in kale	97
502	Appendix 6.2	Analysis of variance of $\%$ ¹⁵ N abundance in kale	98
202	Appendix 6.3	Analysis of variance of % ¹⁵ N atom excess in kale	99
Appendix 7	Analysis of va	ariance of calculated percentage and quantity of	
	N-Uptake in	kale as affected by vegetable soybean	
	decomposition	n A	100
1	Appendix 7.1	Analysis of variance of % N uptake by kale	100
	Appendix 7.2	Analysis of variance of quantity of N-uptake in	
		kale as affected by vegetable soybean	
		composition	100
UCIT	Appendix 7.3	Analysis of variance of % fertilizer use efficiency	
		in kale from vegetable soybean residue	
		decomposition eserve	101
CURRICUL	LUM VITAE		109

LIST OF TABLES

Table	Page
1 Average fresh weight and dry weight of above ground biomass root and	
pod yield of soybean (kg/rai).	24
2 Number and dry weight of root nodules of vegetable soybean	27
3 Contribution of nitrogen in vegetable soybean plant from different sources :	
atmosphere (Ndfa), fertilizer (Ndff) and soil (Ndfs).	28
4 The analysis results of ¹⁵ N from vegetable soybean biomass using Stable	
Isotope Ratio Analysis Mass Spectrometer (Isoprime) connected to Elemental analyzer (NC2500)	31
5 Fresh weight of kale at the different growth stages respond to	
amendment of green manure plant growth and nitrogen translocation	
(kg/rai)	40
6 Nitrogen content in terms of %N,atom $\%^{15}$ N abundance and atom $\%^{15}$ N	
atom excess in kale plant grown on soil incorporated with different nitrogen	
fertilized soybean manures.	42
7 Calculate percentage and quantity of N-Uptake and %FUE of kale from	
vegetable soybean residue decomposition.	44
8 Comparison of kale fresh weight as affected by different levels of	
application rate of soybean biomass with root and urea fertilizer (kg/rai)	57
9 Comparison of kale fresh weight as affected by different levels of	
application rate of soybean biomass without root and urea fertilizer (kg/rai).	59

Table	Page
10 Comparison of kale dry weight as affected by different levels of	
application rate of soybean biomass with root and urea fertilizer (kg/rai)	60
11 Comparison of kale dry weight as affected by different levels of	
application rate of soybean biomass without root and urea fertilizer	
(kg/rai)	61

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

F	liqure	page
1	Quantity of inorganic- N mineralization during 1-6 weeks after amendment	
	of vegetable soybean residues	35
2	Mineralization quantity of NH_4^+ -N during 1-6 weeks after amendment of	
	vegetable soybean residues	36
3	Mineralization quantity of NO ₃ ⁻ -N during 1-6 weeks after amendment of	
	vegetable soybean residues	38
4	Quantity of inorganic-N mineralization in root residue soil incorporated	
	with vegetable soybean plant biomass at different rates during 1-6 weeks	49
5	Quantity of inorganic- N mineralization in non root residue soil	
	incorporated with vegetable soybean plant biomass at different rates during	
	1-6 weeks	51
6	Quantity of NH_4^+ - N- mineralization in root residue soil incorporated with	
	vegetable soybean plant biomass at different rates during 1-6 weeks	53
7	Quantity of NH4 ⁺ -N-mineralization in non root residue soil incorporated	
	with vegetable soybean plant biomass at different rates during 1-6 weeks .	54
8	Quantity of NO ₃ ⁻ -N-mineralization in root residue soil incorporated with	
	vegetable soybean plant biomass at different rates during 1-6 weeks	54
9	Quantity of NO ₃ ⁻ -N-mineralization in non root residue soil incorporated	
	with vegetable soybean plant biomass at different rates during 1-6 weeks	55

Figure

62

10	Relative growth rate of kale as affected by different treatments of organic	
	N application grown in root residue soil	62

11 Relative growth rate of kale dry weight as affected by different levels of soybean biomass without root and urea fertilizer

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF APPENDIX TABLES

		Page
1	The quantity of inorganic-N mineralization during 1-6 weeks after	
	amendment of vegetable soybean residues	103
2	Mineralization quantity of NH_4^+ -N during 1-6 weeks after amendment	
	of vegetable soybean residues	103
3	Mineralization quantity of NO ₃ ⁻ -N during 1-6 weeks after amendment	
	of vegetable soybean residues	104
4	Quantity of inorganic- N mineralization in root residue soil incorporated	
	with vegetable soybean plant biomass at different rates during 1-6 weeks	104
5	Quantity of inorganic-N mineralization in non root residue soil	
	incorporated with vegetable soybean plant biomass at different rates	
	during 1-6 weeks	105
6	Quantity of NH4 ⁺ - N mineralization in root residue soil incorporated	
	with vegetable soybean plant biomass at different rates during 1-6	
	weeks	105
7	Quantity of NH4 ⁺ -N mineralization in non root residue soil incorporated	
	with vegetable soybean plant biomass at different rates during 1-6	
	weeks by Chiang Mai Unive	106
8	Quantity of NO_3^{-} -N mineralization in root residue soil incorporated with	
	vegetable soybean plant biomass at different rates during 1-6 weeks	106

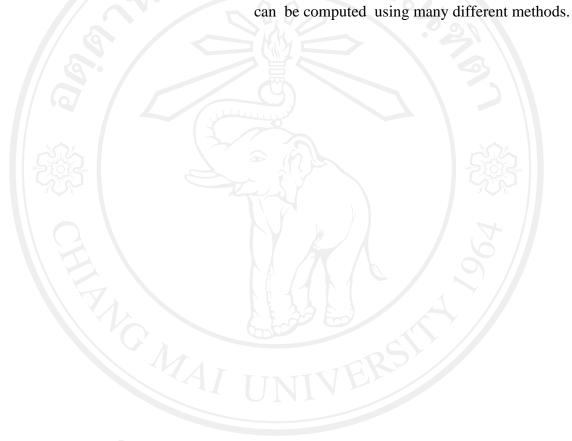
	0			
9 Quantity of NO_3^{-} -N-mineralization in non root residue soil incorporated				
with vegetable soybean plant biomass at different rates during 1-6				
weeks.	107			
10 Relative growth rate of kale dry weight as affected by different levels				
of rate of soybean biomass with root and urea fertilizer	107			
11 Relative growth rate of kale dry weight as affected by different levels				
of rate of soybean biomass without root and urea fertilizer	108			

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ACRONYMS, ABBREVIATIONS AND DEFINITIONS

OM	Organic matter
N, P, K	Nitrogen, Phosphorus, Potassium
% N	Total nitrogen in plant (%)
¹⁵ N	Isotope Nitrogen 15
%Ndfa	Percent nitrogen derived from atmosphere
%Ndff	Percent nitrogen derived from fertilizer
%Ndfs	Percent nitrogen derived from soil
fNdfa	Fraction of nitrogen in plant derived from air
fNdff	Fraction of nitrogen in plant derived from
	fertilizer
fNdfs	Fraction of nitrogen in plant derived from soil
% ¹⁵ N abundance	Number of ¹⁵ N atoms present in 100 atoms of all
	isotopes of N (which are normally 14 N and 15 N)
	in the material.

¹⁵N natural abundance (normally expressed as atom %)


Number of ¹⁵N atoms naturally present in 100 atoms of all isotopes of N in a material. This value is usually referred to as 0.3660 atom %. The difference between % ¹⁵N abundance of the material and the % ¹⁵N natural abundance Has the same meaning as "% ¹⁵N atom excess" Day after planting

%¹⁵N atom excess

%¹⁵N enrichment DAP RGR (Relative growth rate)

FUE (Fertilizer use efficiency)

A measurement of the productivity of a plant, defined as the increase in dry mass per unit of plant mass over a specified period of time. Fertilizer recovery in crop production systems

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved