TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract (English)	v
Abstract (Thai)	ix
List of Tables	XV
List of Figures	xviii
Introduction	1
Chapter 1 Literature review	4
1.1 Upland agriculture in northern Thailand	4
1.2 Land management/land use/cropping systems	5
1.3 Upland agriculture in Huai Tee Cha village (a case study)	6
1.3.1 Land management/cropping	7
1.3.2 Possible roles of fallow trees	8
1.3.3 The relationship between plants and arbuscular	
mycorrhizal (AM) fungi in this system	10
1.4 Mycorrhizal fungi	11
adansult.1 Mycorrhizas agus 201	ĥ
Copyright1.4.2Arbuscular mycorrhizal (AM) fungi1.4.3Classification of Glomales	11 Sity 14
1.5 Factors affecting arbuscular mycorrhizal fungi	e 15
1.6 The benefits of AM fungi to host plants	17

1.7 Variation in response to AM fungi within and among plant species 19

Chapter 2 Farmers' fields and village study	21
2.1 Introduction	21
2.2 Material and methods	22
2.3 Results	25
2.4 Discussion	34
Chapter 3 Associations between arbuscular mycorrhizal fungi	
and swidden crops	37
3.1 Introduction	37
3.2 Material and methods	38
3.3 Results	43
3.4 Discussion	70
Chapter 4 The symbiosis of AM fungi in upland and lowland rice	
in freely drained soil	73
4.1 Introduction	73
4.2 Material and methods	74
4.3 Results	77
4.4 Discussion	101
Chapter 5 General discussion	104
Copyright [©] by Chiang Mai Univers	111 122
All r _{Appendix A} nts reserve	122
Appendix B	127
Appendix C	133
Curriculum vitae	144

LIST OF TABLES

Tab	le	Page
2.1	Properties of the field soils and root colonization and spore density	
	of pada and five crops at Huai Tee Cha village	26
2.2	Spore number 100 g soil ⁻¹ in three soil profiles in Huai Tee Cha fields	29
2.3	Root colonization and spore density of pada and five swidden crops	
	in farmers' fields at Hua Tee Cha	30
2.4	The use of swidden crop seed in Huai Tee Cha village	32
3.1	Effects of phosphorus application and AM inoculation on shoot	
	dry weight (g pot ⁻¹) of four swidden crops and pada at two harvests	45
3.2	Effects of phosphorus application and AM inoculation on root dry	
	weight (g pot ⁻¹) of four swidden crops and pada at two harvests	46
3.3	Effects of phosphorus application and AM inoculation on grain yield	
	(g pot ⁻¹) of Job's tears, sorghum and upland rice at maturity	48
3.4	Effects of phosphorus application and AM inoculation on total nitrogen	
	uptake (mg pot ⁻¹) of four swidden crops at two harvests and pada	51
a 3.5	Effects of phosphorus application and AM inoculation on total phosphorus	1 U
Conv	uptake (mg pot ⁻¹) of four swidden crops at two harvests and pada	52
3.6	Effects of phosphorus application and AM inoculation on total potassioum	
	uptake (mg pot ⁻¹) of four swidden crops at two harvests and pada	53
3.7	Effects of phosphorus application and plant species on mycorrhizal growth	
	responsiveness (MGR; %) for plant dry weight	58

LIST OF TABLES (Continued)

Table	Page
3.8 Effects of phosphorus application and plant species on mycorrhizal nitro	ogen
responsiveness (MNR; %) at the two harvests	59
3.9 Effects of phosphorus application and plant species on mycorrhizal phos	phorus
responsiveness (MPR; %) at the two harvests	60
3.10 Effects of phosphorus application and plant species on mycorrhizal pot	assium
responsiveness (MKR; %) at the two harvests	61
3.11 Abuscular mycorrhizal spores in pada and four swidden crops	
with two phosphorus level	65
4.1 Effects of AM inoculation and phosphorus application on hundred seed	
weight (g) of two rice varieties	83
4.2 Effects of AM inoculation and phosphorus application on total nitrogen	
uptake (mg pot ⁻¹) of two rice varieties	85
4.3 Effects of AM inoculation and phosphorus application on total phospho	rus
uptake (mg pot ⁻¹) of two rice varieties	86
4.4 Effects of AM inoculation and phosphorus application on total potassiu	m
a d d uptake (mg pot ⁻¹) of two rice varieties	87
4.5 Analysis of variance for nutrients concentration in brown rice	rsitv
of two rice varieties	90
4.6 Effects of AM inoculation and phosphorus application on P concentration	on (%)
In brown rice of two rice varieties	91
4.7 Effects of AM inoculation and phosphorus application on Cu concentra	tion
$(mg kg^{-1})$ in brown rice of two rice varieties	92

LIST OF TABLES (Continued)

Table Pa	ige
4.8 Effects of AM inoculation and phosphorus application on N concentration (%)	
in brown rice of two rice varieties	93
4.9 Effects of AM inoculation and phosphorus application on Fe concentration	
(mg kg ⁻¹) in brown rice of two rice varieties	94
4.10 Analysis of variance for nutrients concentration in rice husk	
of two rice varities	95
4.11 Effects of AM inoculation and phosphorus application on S concentration (%))
in husk of two rice varieties	96
4.12 Comparison of nutrient concentration in brown rice and husk of two rice	
varieties (B = Bue Bang, K = KDML 105)	97
FIGHT UNIVERSIT	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

1.1	Rotation of shifting cultivation of Huai Tee Cha Village	9
1.2	The response of Macaranga denticulata to AM fungi under pot	
	conditions; without AM (left) and with AM fungi (right)	10
1.3	Scheme of the different stages of root colonization by an arbuscular	
	mycorrhizal fungus (Balestrini and Lanfranco, 2006)	13
2.1	Foliar nutrient concentrations (N, P, K) in pada and swidden crops at	
	Huai Tee Cha fields	27
2.2	Rice yield (kg ha ⁻¹) of Kayo, Murkur and Takae fields	
	at Huai Tee Cha village in cropping year 2005	33
3.1	The procedure of soil and root samples collection for determination of	
	spore density under stereoscope (Petri-dish) and percentage of root colonizati	on
	under compound microscope (Slide)	41
3.2	Whole seed nutrient concentration of Job's tears, sorghum and upland rice	
	with two P levels (P3: 3 kg P ha ⁻¹ , P30: 30 kg P ha ⁻¹) with and without	
	AM inoculation	55
3.3	Root colonization of pada (P) at the one harvest and four swidden crops	íIJ
Con	(C: corn, J: Job's tears, S: sorghum, U: upland rice) at two harvests as affected	d
	by AM inoculation at two P levels, 3 and 30 kg P ha ⁻¹	64
A 3.4	Percentage of spore and dominant genera in different plant species	a
	at P3 and P30	66

LIST OF FIGURES (Continued)

Page

3.5 Spores of AM fungi from rhizosphere of host plants	67
Acaulospora spp.	67
Acaulospora spp. Glomus spp. Scutellospora spp. and Gigaspora sp.	68
Scutellospora spp. and Gigaspora sp.	69
4.1 Height of lowland rice cv. KDML 105 and upland rice cv. Bue Bang from	2
weeks to 9 weeks as affected by AM inoculation at two P levels	79
4.2 Panicle numbers of lowland rice cv. KDML 105 (V1) and upland rice	
cv. Bue Bang (V1) as affected by AM inoculation with two P level	80
4.3 Shoot dry weight (a) and root dry weight (b) of lowland rice cv. KDML 10	15
(V1) and upland rice cv. Bue Bang (V2) as affected by AM inoculation	
with two P levels	81
4.4 Total seed numbers (a) and total seed weight (b) of lowland rice	
cv. KDML 105 (V1) and upland rice cv. Bue Bang (V2) as affected by	
AM inoculation with two P levels	82
4.5 The percentage of root colonization and spore density (numbers g^{-1} soil)	
of two rice varieties (KDML 105 and Bue Bang) with two AM inoculation	łIJ
(Scutellospora, AM1 and mixed AM spores (AM2) at two P levels	99
4.6 Percentage of spore and dominant genera in KDML 105 and Bue Bang	51LY
inoculated with mixed spores, AM2 at P1 and P10 S C	e 100