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Introduction

Plants acquire nutrient elements from the soil via absorption by their roots.
The nutrients are then transported in xylem sap by water movement in the
transpiration stream to the shoot. However, they may be retranslocated, via the
phloem, to other plant parts, including the shoot tip and reproductive tissues where
transpiration is low (Smith and Loneragan, 1997). Transport in the phloem is
important for long-distance transport in plants especially during seed germination,
when external nutrient supply is lacking for vegetative stage, during reproductive
growth and the period before leaf drop in perennials (Marschner, 1995). This is
because phloem transport takes place in both upward and downward directions and
does not depend on transpiration so it can transport mineral nutrients to the organs
which transpire less or not at all (Shelp er al., 1995). Nutrient retranslocation or
phloem mobility can be determined by a number of criteria, including direct analysis
of nutrient concentration in phloem sap, movement of isotopes, development of
deficiency symptoms, measurement of the rate of influx of an clemenf during fruit
development, comparison of measured contents in different plant parts, and
determination of concentration gradients in plants from older to younger leaves (Van
Goor and Van Lune, 1980; Marschner, 1995).

While all nutrients move readily in the xylem, they vary widely in the extent
of their mobility in the phloem. Boron may be classified as intermediate in phloem

mobility, but it is different from other essential elements in that its phloem mobility



varies among plant species (Marschner, 1995; Brown and Shelp, 1997). In most
species B mobility is confined to the transpiration stream. Hence, B accumulates in
the tip and edge of leaves or older leaves at all times. For example, Brown and Hu
(1998) demonstrated higher B concentrations in old or mature leaves in comparison to
younger leaves of pecan, tomato, strawberry and walnut. They also reported that
pistachio and walnut, grown under field conditions, contained the highest B
concentration in mature leaves and the lowest B concentration in fruit and seed tissue
(Brown er al., 1994). Boron deficiency symptoms always appear on younger and
immature tissues, such as in squash (Hu and Brown, 1994) and tomato, whereas B
toxicity symptoms occur in the tip, margins and interveinal areas of leaves where
concentrations are high (Oertli, 1994). Immobility of B was also found in the '°B
tracer experiment of Brown and Hu (1996). Foliar '°B, applied to mature leaves of
pistachio and walnut, did not move out of treated leaves and there were the lowest B
concentration in younger leaves and fruit tissues remained low.

By contrast, other observations indicate that B is phloem mobile in some
plants. Hanson (1991) reported that the B content in leaves of apple (Malus
domestica), pear (Pyrus communis), plum (Prunus domestica) and cherry (Prunus
ceasus) which were treated with foliar B (500 mg L) decreased to levels similar to
non-treated leaves and the highest B concentration was found in untreated buds.
Applying B to leaves of olive at anthesis also increased B concentrations in leaf
blades, petioles, and bark of bearing shoots, flowers and fruits (Delgado er al., 1994).
In addition, phloem B mobility has been demonstrated in species which produce sugar
alcohols as the primary photosynthates such as in apple, pear, plum, cherry (Brown

and Hu, 1996), celery and peach (Hu et al., 1997).



The retranslocation of B may be associated with B efficiency of plants as
Shelp and Shattuck (1987b) found a relationship between the B retranslocation
capacity and tolerance to B deficiency in two rutabaga cultivars. Moreover,
management of B fertilization has been affected by patterns of B mobility, especially
for foliar application. In species in which B is immobile, foliar-applied B was
effective only for direct-applied tissues. On the other hand, in species where the B is
phloem mobile, foliar-applied B was effective at any time and B could be supplied to
organs developed after application (Brown and Hu, 1996).

As mentioned above, most reports on B mobility concern temperate plants and
information for tropical species is very limited. Consequently, this study proposes to
examine B muobility in tropical crop species. Information on B mobility in tropical
species should be useful for improving the diagnosis of B deficiency by tissue
sampling and analysis and by visual symptoms and also the management of B
fertilization in crop production. Moreover, the variation of B retranslocation among
plant species will influence the direction for the selection of breeding program of

plants tolerant to B deficiency.



