สารบัญ

	หน้า
กิตติกรรมประกาศ	ค
บทคัดย่อภาษาไทย	4
บทคัดย่อภาษาอังกฤษ	น
สารบัญตาราง	ฎ
สารบัญภาพ	พ พ
สารบัญตารางภาคผนวก	ଆ
คำย่อ	r M
บทที่ 1 บทนำ	53
บทที่ 2 การตรวจเอกสาร	` `\
ลิพิค	3
คอเลสเตอรอล	5 735
การสังเคราะห์และการควบคุม	5
กรดไขมัน	6
การสังเคราะห์	6
	7
บทบาทของกรดใขมัน ω-6 และ ω-3	8
สัคส่วนของชนิดกรคไขมัน	9
โรคหลอดเลือดแดงแข็งและตีบ	10
การบริโภคไข่กับความเสี่ยงต่อการเกิดโรคหัวใจและหลอดเลือด	11
ประโยชน์ของการบริโภคไข่ที่มี 🐠-3 สูง	14
แนวทางการลดคอเลสเตอรอลในเนื้อและไข่ไก่	14
ทองแดง	14 15
กระบางเการดดซึ่งและควารขึ้นเรื่อง	
ผลการเสริมทองแดงในอาหารไก่	University _
โกรเมียม	e19 r v e d
ใกติน-ใคโตซาน	21

สารบัญ (ค่อ)

	หน้า
กรคไขมันชนิดไม่อื่มตัว	23
น้ำมันปาล์ม	24
น้ำมันถั่วเหลือง	25
ลินซีค	26
การใช้ประโยชน์	27
สารพิษและการกำจัดพิษบางชนิด	27
การใช้ถิ่นซีดเป็นอาหารไก่	28
• เมล็ด	28
• น้ำมัน	31
บทที่ 3 อุปกรณ์และวิธีการทดลอง	35
อุปกรณ์ที่ใช้ในการทดลอง	35 5 6 2
ส่วนห้องปฏิบัติการ	35
ส่วนฟาร์มทดลอง	37
มหาวิทยาลัยเชียงใหม่ (ไก่เนื้อ)	37
ฟาร์มเอกชน (ไก่ไข่และนกกระทาไข่)	37
วิธีการทดลอง	38
ส่วนห้องปฏิบัติการ	38
ส่วนฟาร์มทดลอง	39
การศึกษาในไก่เนื้อ	39
การศึกษาในไก่ไข่สาว	44
การศึกษาในไก่ไข่ก่อนปลคระวาง	44
การศึกษาในนกกระทาไข่	45
บุทที่ 4 ผลการทดลอง	47
การศึกษาในไก่เนื้อ (การทดลองที่ 1)	U ₄₇ iversity
องค์ประกอบของกรดใจมันในอาหาร	○ 47° V
สมรรถภาพการผลิต	47
คุณภาพซาก	48

สารบัญ (ค่อ)

	หน้า		
คอเลสเตอรอลในเลือดและเนื้อไก่	49		
กรคไขมันในเนื้อไก่และตับ	50		
ทองแคงในอวัยวะภายใน วัสดุรองพื้นคอก และมูลไก่	58		
ต้นทุนการผลิตเนื้อไก ่	59		
การศึกษาในไก้ใช่สาว (การทดลองที่ 2)	60		
สมรรถภาพการผลิต	60		
คอเลสเตอรอลในเลือดและไข่แคง	61		
ทองแดงในมูล	61		
การศึกษาในไก้ใช่ก่อนปลดระวาง (การทดลองที่ 3)	63		
สมรรถภาพการผลิต	63		
คอเลสเตอรอลในเลือดและไข่แคง	63		
ทองแดงในมูล	64		
การศึกษาในนกกระทาไข่ (การทดลองที่ 4)	65		
สมรรถภาพการผลิต	65		
คอเลสเตอรอลในไข่แดง	65		
ทองแคงในมูล	66		
บทที่ 5 วิจารณ์และสรุปผลการทคลอง	68		
วิจารณ์ผลการทดลอง	68		
การศึกษาในไก่เนื้อ (การทดลองที่ 1)	68		
การศึกษาในไก่ไข่และนกกระทาไข่ (การทดลองที่ 2-4)	72		
สรุปผลการทดลอง	75		
สรุปผลการทดลอง			
เอกสารอ้างอิง Copyright by Chiang Mai			
ภาคมนวก rights res	86		
ประวัติผู้เขียน	148		

สารบัญตาราง

ตารางที่	หน้า
1. Essential amino acid, vitamins and minerals of egg yolk, egg white and whole egg.	4
2. Proteins and enzymes consisting copper.	17
3. Fatty acid profiles (% of total fatty acids) of tallow, olive oil, soybean oil and	24
linseed oil	
4. Chemical composition (wt %) of soybean and its components.	26
5. Chemical composition of chitosan.	40
6. Feed formulation and chemical composition of experimental broiler diets during 2-	43
3, 4-6 and 7 weeks of age. (Exp. 1)	
7. Feed formulation and chemical composition of both experimental laying hen diets	45
(Exp.2 and 3).	
8. Fatty acid profiles in experimental diets (g/100 g fat).	48
9. Production performance and cost of broilers fed diets containing different sources	49
of plant oil or supplemented with chitosan (0.6% of diet) and various levels of Cu	
or Cr during 2-7 weeks of birds' age.	
10. Dressing percentage, weight of visceral organs, drumstick (with bone) and breast	50
meat of broilers fed diets containing different sources of plant oils or	
supplemented with chitosan (0.6% of diet) and various levels of Cu or Cr during	
2-7 weeks of birds' age.	
11. Cholesterol in serum and muscle of broilers fed diets containing different sources	51
of plant oils or supplemented with chitosan (0.6% of diet) and various levels of	
Cu or Cr during 2-7 weeks of birds' age.	
12. Fatty acid profiles in breast meat (mg/100g) of 7 week-old broilers fed diets	54
containing different sources of plant oil or supplemented with chitosan (0.6% of	
diet) and various levels of Cu or Cr during 2-7 weeks.	
13. Fatty acid profiles in drumstick meat (mg/100g) of 7 week-old broilers fed diets	55 Versity
containing different sources of plant oil or supplemented with chitosan, Cu and Cr	

สารบัญตาราง (ต่อ)

ตารางที	หน้า
14. Fatty acid profiles in liver (mg/100g) of 7-week old broilers fed diets containing	56
different sources of plant oil or supplemented with chitosan, Cu and Cr during 2-	
7 weeks.	
15. Fatty acid profiles in meat (breast and drumstick) and liver (mg/100g fresh	57
weight) of broilers after changing from control diet to diets containing soybean	
or linseed oils for 7 days during day 50-56 of birds' age.	
16. Serum and muscle cholesterol after changing from control diet to diets containing	58
soybean and linseed oils for 7 days during day 50-56 of birds' age.	
17. Copper content in visceral organs of 7 week-old broilers fed diets containing	59
difference sources of plant oils or supplemented with chitosan, Cu and Cr and	
copper content in litter at day 49 of the experiment.	
18. Copper (Cu) content in excreta (mg/kg, air dry basis) of 7-week old broilers fed	60
diets containing various levels of Cu for 42 days and after changing to the control	
diet.	
19. Production performance and egg quality of laying hens fed diets supplemented	61
with Cu and Cr during 25-37 weeks of birds' age (Exp. 2).	
20. Serum and yolk cholesterol content of laying hens fed diets supplemented with	62
Cu and Cr during 25-37 weeks of birds age (Exp. 2).	
21. Copper content in excreta of laying hens fed diets supplemented with Cu and Cr	62
during 25-37 weeks of birds' age (Exp. 2).	
22. Production performance and egg quality of laying hens fed diets supplemented	63
with Cu and Cr during 72-80 weeks of birds' age (Exp. 3).	
23. Serum and yolk cholesterol content of laying hens fed diets supplemented with	64
Cu and Cr during 72-80 weeks of birds age (Exp. 3).	
24. Copper content in excreta of laying hens fed diets supplemented with Cu and Cr	J ₆₅ iversity
during 72-80 weeks of birds' age (Exp. 3).	
25. Production performance, egg quality and egg cholesterol of Japanese quails fed	66
diets supplemented with Cu and Cr during 84 days (Exp. 4).	

สารบัญตาราง (ต่อ)

ตารางที่ หน้า

26. Copper content in excreta of Japanese quails fed diets supplemented with Cu and Cr during 84 days (Exp. 4).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University -All rights reserved

สารบัญภาพ

ภาพที	หน้า
1. Cholesterol is the carbon skeleton precursor for all steroid hormones.	5
2. Biosynthesis of the ω 9, ω 6 and ω 3 families of polyunsaturated fatty acid.	8
3. Comparative effects of linoleic and A-linolenic acids on eicosanoid metabolism.	9
4. Gross view of atherosclerosis in the aorta	10
5. Rates of CHD mortalities relative to CSI dietary patterns for each country.	12
6. Relationship between CHD mortality rates and per capita egg consumption.	13
7. Chemical structure of glucose tolerance factor.	19
8. Chemical structure of chromium.	20
9. Chemical structures of chitin and chitosan.	21
10. The extraction process of chitin and chitosan from shrimp or crab shells.	23
11. Linseed plant.	27
12. Automated chemistry analyzer (MERCK; Mega)	36
13. Atomic absorption spectrophotometer (Perkin Elmer; 3100).	36
14. Gas chromatography (Shimadzu; GC-14 B)	36
15. The forms of chromium and copper used in the experiments.	40
16. Oils from soybean, palm and linseed.	40
17. Cholesterol in serum and muscle of 7 week-old broilers.	52
18. Fatty acid profiles in breast meat (mg/100g) of 7-week old broilers.	53
19. Fatty acid profiles in drumstick meat (mg/100g) of 7-week old broilers.	53
20. Yolk cholesterol content of laying hens and Japanese Quails.	67

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University -All rights reserved

สารบัญตารางภาคผนวก

Table Appendix B.	หน้า
B-1 Fatty acids profiles in breast meat (% of methyl esters of fatty acids) of 7-week	95
old broilers fed diets containing different sources of plant oil or supplemented	
with chitosan (0.6% of diet) and various levels of Cu or Cr during 2-7 weeks.	
B-2 Fatty acids profiles in drumstick meat (% of methyl esters of fatty acids) of 7-	96
week old broilers fed diets containing different sources of plant oil or	
supplemented with chitosan (0.6% of diet) and various levels of Cu or Cr	
during 2-7 weeks.	20
B-3 Fatty acids profiles in liver meat (% of methyl esters of fatty acids) of 7-week	97
old broilers fed diets containing different sources of plant oil or supplemented	
with chitosan (0.6% of diet) and various levels of Cu or Cr during 2-7 weeks.	
B-4 Fatty acid profiles in experimental diets (% of methyl esters of fatty acids)	98
B-5 Production performance of broilers fed diets containing different sources of	99
plant oil or supplemented with chitosan (0.6% of diet) and various levels of Cu	
or Cr during 2-7 weeks.	
B-6 Production performance, egg quality and egg cholesterol of laying hens fed	100
diets supplemented with Cu and Cr during 25-37 weeks of birds' age (Exp. 2)	
B-7 Production performance and egg quality of laying hens fed diets supplemented	101
with Cu and Cr during 72-80 weeks of birds' age (Exp. 3)	
B-8 Production performance, egg quality and egg cholesterol of Japanese quails fed	102
diets supplemented with Cu and Cr during 84 days (Exp. 4)	
Table Appendix C.	หน้า
C-1 ANOVA: Production performance (Exp. 1)	104
C-2 ANOVA: Dressing percentage and weight of visceral organs (Exp. 1)	106
C-3 ANOVA: Serum and muscle cholesterol (Exp. 1)	Inversi
C-4 ANOVA: Copper contents in visceral organs (Exp. 1)	109
C-5 ANOVA: Copper contents in excreta (Exp. 1)	110
C-6 ANOVA: Fatty acid composition in breast (mg/100g) (Exp. 1)	111
C-7 ANOVA: Fatty acid composition in drumstick (mg/100g) (Exp. 1)	115
C-8 ANOVA: Fatty acid composition in liver (mg/100g) (Exp. 1)	119

สารบัญตารางภาคผนวก (ต่อ)

Table Appendi	หน้า _'	
C-9 ANOVA:	Fatty acid composition in breast (mg/100g) after changing control	123
	diet to diets containing soybean or linseed oils for 7 days (Exp. 1)	
C-10 ANOVA:	Fatty acid composition in drumstick (mg/100g) after changing	128
	control diet to diets containing soybean or linseed oils for 7 days	
	(Exp. 1)	
C-11 ANOVA:	Fatty acid composition in liver (mg/100g) after changing control	132
	diet to diets containing soybean or linseed oils for 7 days (Exp. 1)	
C-12 ANOVA:	Fatty acid composition in experimental diets (g/100g) (Exp. 1)	137
C-13 ANOVA:	Production performance and egg quality of laying hens fed diets	140
	supplemented with Cu and Cr during 25-37 weeks of birds' age	
	(Exp. 2)	
C-14 ANOVA:	Serum and yolk cholesterol (Exp. 2)	141
C-15 ANOVA:	Copper content in excreta (Exp. 2)	142
C-16 ANOVA:	Production performance and egg quality of laying hens fed diets	143
	supplemented with Cu and Cr during 72-80 weeks of birds' age	
	(Exp. 3)	
C-17 ANOVA:	Serum and yolk cholesterol (Exp. 3)	144
C-18 ANOVA:	Copper content in excreta (Exp. 3)	144
C-19 ANOVA:	Production performance, egg quality and yolk cholesterol of	145
	Japanese quails fed diets supplemented with Cu and Cr during 84	
	days (Exp. 4)	
C-20 ANOVA:	Copper content in excreta (Exp. 4)	146

Copyright[©] by Chiang Mai University -

คำย่อ

ANOV	'A=	analysis of variance	m^2	=	meter square
Bt	_	baht	ME	=	metabolizable energy
BWG	=	body weight gain	mg	=	milligram
C.V.	=	coefficient of variation	ml	=	milliliter
CF	=	crude fiber	mm.	261	millimeter
cm.	=	centimeter	MS	=	mean square
CP	=	crude protein	ppb	1	part per billion (ส่วนในพันล้านส่วน)
df	=	degree of freedom	ppm	/ -	part per million (ส่วนในถ้านส่วน)
dl	=	deciliter	Pr	=	probability
EE	=	ether extract	S.E.M.)	standard error of mean
Exp.	=	experiment	sov		source of variation
FCR	=	feed conversion ratio	SS		sum of square
FI	=	feed intake	vs.	5=	versus
g	=	gram	ω		omega
GC	=	Gas chromatography	°C	- 4	degree celsius
kcal	=	kilocalorie	μl	= / \	microliter
kg	=	kilogram			
		MAI			

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved