สารบัญ

	หน้า
ก็ตติกรรมประกาศ	P
บทคัดย่อภาษาไทย	v
บทคัดย่อภาษาอังกฤษ	ฉ
สารบัญตาราง	ស្ង
สารบัญภาพ	<u> </u>
สารบัญตารางภาคผนวก	
อักษรย่อ	ฐ ท
บทที่ 1 บทนำ	1
วัตถุประสงค์	2
บทที่ 2 การตรวจเอกสาร	
ลิพิด	3
คอเลสเตอรอล	3
แนวทางการลดคอเลสเตอรอลในเนื้อและไข่ไก่	
[집합]입 역 기계 1911 1911 11 1911 11 11 11 11 11 11 11	11
สมุนไพร	12
เม _{ือน หม} า โปรไบโอติก	14
แร่ธาตุ	15
แงบ เตุ กรดไขมันชนิดไม่อิ่มตัวเชิงซ้อน	16
กาตเอลเผยผตามของชอน ไคติน และไคโตซาน	23
เคตน และเคเตซาน	30
Jทที่ 3 อุปกรณ์ และวิธีการทดลอง	32
้ อุปกรณ์ที่ใช้ในการทดลอง	
วิธีการทดลอง	
วธการทดลอง การวิเคราะห์ข้อมูลทางสถิติ	University
400 vide	
ลเกษทุพกกรทุดลอง	e r ve (

สารบัญ (ต่อ)

	หน้า
บทที่ 4 ผลการทดลอง	40
ส่วนประกอบของกรดไขมันในน้ำมันจากพืชที่ใช้ทดลอง	40
การศึกษาในไก่ไข่ <i>(การทดลองที่ 1)</i>	41
สมรรถภาพการผลิตและคุณภาพไข่	41
คอเลสเตอรอลในเลือดและไช่	41
กรดไขมันในไข่	43
ทองแดงในอวัยวะภายในและมูล	45
การศึกษาในนกกระทาไข่ <i>(การทดลองที่ 2)</i>	47
สมรรถภาพการผลิตและคุณภาพไช่	47
คอเลสเตอรอลในไข่	48
กรดไขมันในไข่	49
ทองแดงในมูล	50
ต้นทุนการผลิตไข่ไก่ และไข่นกกระทา	51
บทที่ 5 วิจารณ์และสรุปผลการทดลอง	53
วิจารณ์ผลการทดลอง	53
สรุปผลการทดลอง	59
เอกสารอ้างอิง	61
ภาคผนวก	69
ภาคผนวก ก. การวิเคราะห์ตัวอย่างในห้องปฏิบัติการ	69
ภาคผนวก ซ. ข้อมูลด้านสมรรถภาพการผลิต	74
ภาคผนวก ค. ข้อมูลการวิเคราะห์ความแปรปรวน (ANOVA)	98
ประวัติผู้เขียน gnt by Chiang Mai U	niversity

สารบัญตาราง

ตารา	ตารางที่	
1.	Cholesterol content per 100 g. of fresh egg matter in individual	
	weeks of the laying period.	10
2.	The relative biological value of different Cu sources in poultry.	18
3.	Fatty acid composition of some plant oils compared with tallow.	29
4.	Feed formulation and chemical composition of experimental laying	
	hen diets.	. 37
5.	Feed formulation and chemical composition of experimental laying	
	Japanese quails diets.	39
6.	Fatty acid profiles (% of total fatty acid) in palm, soybean and linseed	
	oils which is investigated in this study.	40
7.	Production performance of laying hens fed diets containing different	
	sources of plant oil and various levels of copper and chromium	
	during 168 days.	42
8.	Serum and yolk cholesterol content of laying hens fed diets	
	containing different sources of plant oil and various levels of copper	
	or chromium during 168 days and after changing to the control	
	diets for 28 day.	43
9.	Fatty acid profiles in egg yolk of laying hens fed diets containing	
	different sources of plant oil and various levels of copper and	
	chromium during 168 days.	44
10.	Copper content in visceral organs of laying hens fed diets containing	
	different sources of plant oil and various levels of copper and	
	chromium during 168 days.	46
11.	Copper in excreta of laying hens containing different sources of	
	plant oil and various levels of copper and chromium during 168	
	days and after changing to the control diets for 28 days.	47

สารบัญตาราง (ต่อ)

ตารางที่	หน้า
12. Production performance of Japanese quails fed diets containing different sources of plant oil and various levels of copper and	
chromium during 84 days.	48
13. Yolk cholesterol content of Japanese quails fed diets containing	
different sources of plant oil and various levels of copper and	
chromium during 84 days.	48
14. Fatty acid profiles (% of total fatty acid) in egg yolk of Japanese	
quails fed diets containing different sources of plant oil and various	
levels of copper or chromium during 84 days.	49
15. Copper content in excreta of Japanese quails fed diets containing	
different sources of plant oil and various levels of copper and	
chromium during 84 days.	50
16. Cost of production of laying hens and Japanese quails fed diets	
containing different sources of plant oil and various levels of copper	
and chromium during 168 and 84 days, respectively.	51

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

สารบัญภาพ

ภาพท็	di N	หน้า
1.	Structural formula of cholesterol	7
2.	Cholesterol content per egg and per 100 g of yolk	11
3.	Metabolic pathways of essential fatty acids in mammals	25
4.	Flax seed and oil	28
5.	Structure of chitin	31
6.	Automated chemistry analyzer (MERCK; Mega)	33
7.	Gas chromatography (Shimadzu; GC-14B)	33
8.	Atomic absorption spectrophotometer (Perkin Elmer; 3100)	33
9.	The form of chromium and copper use in the experiment	36
10.	Oils from soybean, palm and linseed	36

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

สารบัญตารางภาคผนวก

ตาราง	ภาคผนวก ซ. ที่ (Table Appendix B.)	หน้า
B-1	Egg production of laying hens fed diets containing different	
	sources of plant oil and various levels of copper and chromium	
	during 168 days.	74
B-2	Feed intake of laying hens fed diets containing different sources	
	of plant oil and various levels of copper and chromium during 168	
	days.	74
B-3	Feed used (kg)/doz. egg of laying hens fed diets containing	
	different sources of plant oil and various levels of copper and	
	chromium during 168 days.	75
B-4	Feed used (kg)/egg of laying hens fed diets containing different	
	sources of plant oil and various levels of copper and chromium	
	during 168 days.	75
B-5	Body weight gain (g) of laying hens fed diets containing different	
	sources of plant oil and various levels of copper and chromium	
	during 168 days.	76
B-6	Egg weight (g) of laying hens fed diets containing different	
	sources of plant oil and various levels of copper and chromium	
	during 168 days.	76
B-7	Egg specific gravity of laying hens fed diets containing different	
	sources of plant oil and various levels of copper and chromium	
	which added in to control diet during 168 days.	77
B-8	Haugh unit of laying hens fed diets containing different sources of	
	plant oil and various levels of copper and chromium during 168	
	days. ight hv Chiang Mai Uni	VAI7711
B-9	Yolk color (score) of laying hens fed diets containing different	
	sources of plant oil and various levels of copper and chromium	
	during 168 days.	78

Table	Appendix B.	หน้า
B-10	Egg shell thickness (mm) of laying hens fed diets containing different sources of plant oil and various levels of copper and chromium during 168 days.	78
B-11	Egg grading (%) of laying hens fed diets containing different sources of plant oil and various levels of copper and chromium during 168 days.	79
B-12	Serum cholesterol (mg/dl) of laying hens fed diets containing different sources of plant oil and various levels of copper and	
B-13	chromium during 168 days. Cholesterol in yolk and egg of laying hens fed diets containing different sources of plant oil and various levels of copper and	80
B-14	chromium during 168 days. Fatty acid profiles (% of total fatty acid) in egg yolk of laying hens	81
B-15	fed diets containing different sources of plant oil and various levels of copper and chromium during 168 days. Fatty acid profiles (g/100g yolk) in egg yolk of laying hens fed	82
B-16	diets containing different sources of plant oil and various levels of copper and chromium during 168 days. Fatty acid profiles (g/egg) in egg yolk of laying hens fed diets	84
	containing different sources of plant oil and various levels of copper and chromium during 168 days.	86
B-17	Copper content in excreta of laying hens fed diets containing different sources of plant oil and various levels of copper and	
A.	chromium during 168 days and after changing to the control diets for 28 day.	88
B-18	Copper content (mg/kg) in visceral organs of laying hens fed diets containing different sources of plant oil and various levels of copper	
B-19	and chromium during 168 days. Egg production (%) of Japanese quails fed diets containing different sources of plant oil and various levels of copper and	89
	chromium during 84 days.	89

Table	Appendix B.	หน้า
B-20	Feed intake (g/day) of Japanese quails fed diets containing different sources of plant oil and various levels of copper and chromium during 84 days.	90
B-21	Feed used (kg)/100 eggs of Japanese quails fed diets containing different sources of plant oil and various levels of copper and chromium during 84 days.	
B-22	Feed used (kg)/kg. egg of Japanese quails fed diets containing different sources of plant oil and various levels of copper and	90
B-23	chromium during 84 days. Egg weight (g) of Japanese quails fed diets containing different sources of plant oil and various levels of copper and chromium	90
B-24	during 84 days. Yolk color (score) of Japanese quails fed diets containing different sources of plant oil and various levels of copper and chromium	91
B-25	during 84 days. Egg shell thickness (mm) of Japanese quails fed diets containing different sources of plant oil and various levels of copper and chromium during 84 days.	91
B-26	Cholesterol in yolk and egg of Japanese quails fed diets containing different sources of plant oil and various levels of copper and	91
B-27	chromium during 84 days. Copper content in excreta of Japanese quails fed diets containing different sources of plant oil and various levels of copper and	92
B-28	chromium during 84 days. Retention time, area peak and fatty acid profiles in egg yolk of Japanese quails fed diets containing different sources of plant oil	92 L
B-29	and various levels of copper and chromium during 84 days. Cholesterol content in laying hen and Japanese quails egg yolk	93
	from various report sources during 1980-2003.	94
B-30	Fatty acid profiles (% of total fatty acid) of laying hens egg yolk from various reports.	95

Table a	Appendix B.	หน้า
B-31	Fatty acid profiles (% of total fatty acid) of Japanese quails egg yolk	96
	from various reports.	
B-32	Fatty acids profiles of some plant oils compared with tallow	
	(g/100g fat).	97
Table /	Appendix C.	
Table /	appendix c.	
C-1	ANOVA: Egg production of laying hens for 168 days.	98
C-2	ANOVA: Feed intake of laying hens for 168 days.	98
C-3	ANOVA: Feed/doz. egg of laying hens for 168 days.	98
C-4	ANOVA: Feed/kg egg of laying hens for 168 days.	98
C-5	ANOVA: Body weight gain of laying hens for 168 days.	98
C-6	ANOVA: Egg weight of laying hens for 168 days.	99
C-7	ANOVA: Haugh unit of laying hens for 168 days.	99
C-8	ANOVA: Egg specific gravity of laying hens for 168 days.	99
C-9	ANOVA: Egg shell thickness of laying hens for 168 days.	99
C-10	ANOVA: Yolk color of laying hens for 168 days.	99
C-11	ANOVA: Egg grading No. 5 (< 50 g.) of laying hens for 168 days.	100
C-12	ANOVA: Egg grading No. 4 (51-55 g.) of laying hens for 168 days.	100
C-13	ANOVA: Egg grading No. 3 (56-60 g.) of laying hens for 168 days.	100
C-14	ANOVA: Egg grading No. 2 (61-65 g.) of laying hens for 168 days.	100
C-15	ANOVA: Egg grading No. 1 (66-70 g.) of laying hens for 168 days.	100
C-16	ANOVA: Egg grading No. 0 (>70 g.) of laying hens for 168 days.	101
C-17	ANOVA: Serum cholesterol of laying hens for 168 days.	101
C-18	ANOVA: Serum cholesterol of laying hens (after changing to the	
	control diet)	101
C-19	ANOVA: Yolk cholesterol of laying hens for 168 days. (mg/g yolk)	101
C-20	ANOVA: Yolk cholesterol of laying hens (after changing to the	
	control diet, mg/g yolk)	101
C-21	ANOVA: Yolk cholesterol of laying hens for 168 days. (mg/egg)	102

Table	Appendix C.	หน้า
C-22	ANOVA: Yolk cholesterol of laying hens (after changing to the	
	control diet, mg/egg)	102
C-23	ANOVA: Fatty acid profile of laying hens (C16:0, % of total fatty acid)	102
C-24	ANOVA: Fatty acid profile of laying hens (C16:1, % of total fatty acid)	102
C-25	ANOVA: Fatty acid profile of laying hens (C18:0, % of total fatty acid)	102
C-26	ANOVA: Fatty acid profile of laying hens (C18:1, % of total fatty acid)	103
C-27	ANOVA: Fatty acid profile of laying hens (C18:2, % of total fatty acid)	103
C-28	ANOVA: Fatty acid profile of laying hens (C18:3, % of total fatty acid)	103
C-29	ANOVA: Fatty acid profile of laying hens (C20:5, % of total fatty acid)	103
C-30	ANOVA: Fatty acid profile of laying hens (C22:6, % of total fatty acid)	104
C-31	ANOVA: Fatty acid profile of laying hens (SFA, % of total fatty acid)	104
C-32	ANOVA: Fatty acid profile of laying hens (UFA, % of total fatty acid)	104
C-33	ANOVA: Fatty acid profile of laying hens (MUFA, % of total fatty acid)	104
C-34	ANOVA: Fatty acid profile of laying hens (PUFA, % of total fatty acid)	105
C-35	ANOVA: Fatty acid profile of laying hens (UFA/SFA, % of total fatty	105
	acid)	
C-36	ANOVA: Fatty acid profile of laying hens (n-3, % of total fatty acid)	105
C-37	ANOVA: Fatty acid profile of laying hens (n-6, % of total fatty acid)	105
C-38	ANOVA: Fatty acid profile of laying hens (n-6/n-3, % of total fatty	106
	acid)	
C-39	ANOVA: Fatty acid profile of laying hens (C16:0, g/100g yolk)	106
C-40	ANOVA: Fatty acid profile of laying hens (C16:1, g/100g yolk)	106
C-41	ANOVA: Fatty acid profile of laying hens (C18:0, g/100g yolk)	106
C-42	ANOVA: Fatty acid profile of laying hens (C18:1, g/100g yolk)	106
C-43	ANOVA: Fatty acid profile of laying hens (C18:2, g/100g yolk)	107
C-44	ANOVA: Fatty acid profile of laying hens (C18:3, g/100g yolk)	107
C-45	ANOVA: Fatty acid profile of laying hens (C20:5, g/100g yolk)	107
C-46	ANOVA: Fatty acid profile of laying hens (C22:6, g/100g yolk)	107
C-47	ANOVA: Fatty acid profile of laying hens (SFA, g/100g yolk)	107
C-48	ANOVA: Fatty acid profile of laying hens (UFA, g/100g yolk)	108
C-49	ANOVA: Fatty acid profile of laying hens (MUFA, g/100g yolk)	108

Table	Appendix C.	หน้า
C-50	ANOVA: Fatty acid profile of laying hens (PUFA, g/100g yolk)	108
C-51	ANOVA: Fatty acid profile of laying hens (UFA/SFA, g/100g yolk)	108
C-52	ANOVA: Fatty acid profile of laying hens (n-3, g/100g yolk)	108
C-53	ANOVA: Fatty acid profile of laying hens (n-6, g/100g yolk)	109
C-54	ANOVA: Fatty acid profile of laying hens (n-6/n-3, g/100g yolk)	109
C-55	ANOVA: Fatty acid profile of laying hens (C16:0, g/egg)	109
C-56	ANOVA: Fatty acid profile of laying hens (C16:1, g/egg)	109
C-57	ANOVA: Fatty acid profile of laying hens (C18:0, g/egg)	109
C-58	ANOVA: Fatty acid profile of laying hens (C18:1, g/egg)	110
C-59	ANOVA: Fatty acid profile of laying hens (C18:2, g/egg)	110
C-60	ANOVA: Fatty acid profile of laying hens (C18:3, g/egg)	110
C-61	ANOVA: Fatty acid profile of laying hens (C20:5, g/egg)	110
C-62	ANOVA: Fatty acid profile of laying hens (C22:6, g/egg)	110
C-63	ANOVA: Fatty acid profile of laying hens (SFA, g/egg)	111
C-64	ANOVA: Fatty acid profile of laying hens (UFA, g/egg)	111
C-65	ANOVA: Fatty acid profile of laying hens (MUFA, g/egg)	111
C-66	ANOVA: Fatty acid profile of laying hens (PUFA, g/egg)	111
C-67	ANOVA: Fatty acid profile of laying hens (UFA/SFA, g/egg)	1 1 1
C-68	ANOVA: Fatty acid profile of laying hens (n-3, g/egg)	112
C-69	ANOVA: Fatty acid profile of laying hens (n-6, g/egg)	112
C-70	ANOVA: Fatty acid profile of laying hens (n-6/n-3, g/egg)	112
C-71	ANOVA: Copper in heart of laying hens for 168 days.	112
C-72	ANOVA: Copper in liver of laying hens for 168 days.	112
C-73	ANOVA: Copper in gizzard of laying hens for 168 days.	113
C-74	ANOVA: Copper in gastrointestinal tract of laying hens for 168 days.	113
C-75	ANOVA: Copper in excreta of laying hens for 168 days (fresh).	113
C-76	ANOVA: Copper in excreta of laying hens for 168 days (AD).	113
C-77	ANOVA: Copper retention of laying hens for 168 days.	114
C-78	ANOVA: Copper in excreta of laying hens (after changing to the	
	control diets, fresh wt.).	114

Table	Appendix C.	หน้า
C-79	ANOVA: Copper in excreta of laying hens (after changing to the	
	control diets, AD)	114
C-80	ANOVA: Copper retention of laying hens (after changing to the control diets).	114
C-81	ANOVA: Egg production of Japanese quails for 84 days.	114
C-82	ANOVA: Feed intake of Japanese quails for 84 days.	114
C-83	ANOVA: Feed/100 egg of Japanese quails for 84 days.	115
C-84	ANOVA: Feed/kg egg of Japanese quails for 84 days.	115
C-85	ANOVA: Body weight gain of Japanese quails for 84 days.	115
C-86	ANOVA: Egg weight of Japanese quails for 84 days.	115
C-87	ANOVA: Egg shell thickness of Japanese quails for 84 days.	115
C-88	ANOVA: Yolk color of Japanese quails for 84 days.	115
C-89	ANOVA: Yolk cholesterol of Japanese quails for 84 days (mg/g yolk).	116
	ANOVA: Yolk cholesterol of Japanese quails for 84 days (mg/egg).	116
	ANOVA: Copper in excreta of Japanese quails for 84 days (fresh wt.).	116
	ANOVA: Copper in excreta of Japanese quails for 84 days (AD).	116
	ANOVA: Copper retention of Japanese quails for 84 days.	116

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

อักษรย่อ

ก.	= กรัม	ppb = part per billion
กก.	= กิโลกรัม	bare bot pillioff
ซม.	= เซนติเมตร	ppm = part per million
ม.	= เมตร	FID = flame ionization detector
มม.	= มิลลิเมตร	name ionization detector
มล.	= มิลลิลิตร	GC = gas chromatography
มก.	= มิลลิกรัม	m = meter
୭ล.	= เดซิลิตร	m = meter nm = nanometer
° ซ	= องศาเซลเซียส	mm = millimeter
		μm = micrometer
g	= gram	
mg	= milligram	ANOVA = analysis of variance
kg	= kilogram	CV = coefficient of variation
kcal	= kilocalorie	df = degree of freedom
ml .	. = milliliter	MS = mean square
dl	= deciliter	SS = sum of square
μΙ	= microliter	SOV = source of variation
		S.E.M. = standard error of mean
Exp.	= experiment	Standard Citor of Mean
vs.	= versus	Ave. = average
		2.01050
AD	= air dry	
DM	= dry matter	
CP	= crude protein	
EE C	= ether extract	
ME	= metabolizable energy	

metabolizable energy ME

CF crude fiber

Са calcium

аP available phosphorus