2212 A B B B B B B B B B B B B B B B B B B	Page
ACKNOWLEDGEMENT	iii
ABSTRACT	V
LIST OF TABLES	xiii
LIST OF ILLUSTRATIONS	XV
LIST OF APPENDIX TABLES	xvii
LIST OF ABBREVIATIONS	xx
CHAPTER	
1 INTRODUCTION	1
2 LITERATURE REVIEW	3
2.1 Pig production in Thailand	3
2.2 Common feed stuffs	4
2.2.1 Antinutritional components of soy products	5
2.2.1.1 Protease inhibitors	5
2.2.1.2 Lectin	8
2.2.1.3 Soy Antigens	8
2.3 The effect of nutrient impacts on water quality	10
2.4 Improving the nutritional value of grain legumes	12
2.4.1 Plant breeding	12
2.4.2 Physical treatments	13
2.4.3 Heat treatments	13
Copyrig 2.4.4 Chemical treatments ang Mai Unive	ers ¹⁵ tv
2.5 Bacillus sp.	18
2.6 Protease production C S C C S C I V	C 18 C
2.6.1 Liquid fermentation	18
2.6.2 Solid state fermentation	19

(continued)	
2818126	
	Page
2.7 Protease	20
2.7.1 Bacteria	20
2.7.2 Fungi	21
2.7.3 Classification of protease	21
2.7.3.1 Exopeptidases	22
2.7.3.2 Endopeptidases	24
3 MATERIALS AND METHODS	28
3.1 Microorganisms	28
3.2 Instruments, chemicals and media	28
3.2.1 Instruments	28
3.2.2 Chemicals	29
3.2.3 Media	31
3.3 Media Culture and inoculum preparation	32
3.4 Screening of protease producing strains	32
3.4.1 Culture condition	32
3.4.2 Growth determination	33
3.4.3 Protease activity assay	33
3.4.4 Resistance to pH and heat	33
3.4.5 Resistance to protease inhibitors	34
3.5 Optimization of crude protease production	34
3.5.1 Liquid phase fermentation	34
3.5.2 Production of crude protease powder	34 0
3.6 Shelf-life of crude protease powder	34
3.6.1 Effect of temperature, time, and air exposure during storage	34
3.7 Characterization of crude protease powder from <i>Bacillus</i> sp. FAS001	35
3.7.1 Optimum pH	35

(continued)		
ે ગેમદાસંધ	Page	
3.7.2 Optimum temperature	35	
3.7.3 Activity profiles	35	
3.7.4 Cytotoxicity test	35	
3.8 Testing of enzyme quality by <i>in vitro</i> digestibility	36	
3.8.1 Experimental design	36	
3.8.2 Procedure	36	
3.9 Testing effect of enzyme on production performance in pigs	38	
3.9.1 Experimental design	38	
3.9.2 Diet	38	
3.9.3 Animals, housing and management	40	
3.9.4 Data Collection	40	
3.10 The estimation of enzyme added diets by measuring blood urea		
nitrogen (BUN)	41	
3.11 Statistical analysis	42	
4 RESULTS AND DISCUSSIONS	43	
4.1 Screening of protease producing strains	43	
4.1.1 Protease production	43	
4.1.2 Resistance to pH and heat treatment	43	
4.1.2 Resistance to protease inhibitors	46	
4.2 Optimization of crude protease production	48	
4.2.1 Effect of SBM concentration	48	
4.2.2 Effect of initial pH	C 49 O	
4.2.3 Effect of cultivation temperature	50	
4.2.4 Effect of agitation rate and ratio of medium to air content	51	
4.2.5 Effect of inorganic salts	51	

(continued)	
· 97818189 8/2	Page
4.2.6 Effect of media additives	53
4.2.7 Effect of inoculum levels	55
4.2.8 Time course of enzyme production	56
4.2.9 Production of crude protease powder	58
4.3 Effect of temperature, time, and air exposure during storage	58
4.4 Characterization of crude protease powder from <i>Bacillus</i> sp.	
FAS001	59
4.4.1 Optimum pH	59
4.4.2 Optimum temperature	61
4.4.3 Other enzymes activity	61
4.4.4 Cytotoxicity test	62
4.5 Testing of enzyme quality by <i>in vitro</i> digestibility	64
4.6 Testing effect of enzyme on production performance in pigs	68
4.7 The estimation of enzyme added diets by measuring blood urea	71
nitrogen (BUN)	
5 CONCLUSIONS	73
REFERENCES	74
APPENDIX SUKASANGASISSIA	KU
APPENDIX A	89
CopyAPPENDIX B C by Chiang Mai Univer	91
APPENDIX C	106
A curriculum vitaes nts reserv	121

LIST OF TABLES

Tabl	ે ગંમાદ્ય છે.	Page
	Distribution and physiological effects on ANFs found in vegetable protein	8-
	meals	6
2.2	Some anti-nutritional components of soy products	7
	Effect of feeding different soybean products on gut morphology and serum	
	antibody immunoglobulin G titers to soy protein of pigs	9
2.4	Effluent standard for pig farm.	11
	Categories of CAFOs and numbers of animals required to obtain a permit	12
	under the CWA in EPA region 6	14
2.6	Effect of heat treatments on inactivation of ANF in <i>Phaseolus vulgaris</i> beans	
	Effect of protease addition on total soluble matter, soluble crude protein	16
	and soybean trypsin inhibitor level (SBTI)	19
2.8	Classification of proteases	
3.1	Composition of the diets for <i>in vitro</i> digestibility experiment.	37
3.2	Chemical analysis (%) of the diets for <i>in vitro</i> digestibility experiment.	38
3.3	Composition of the weaner diets for productive performance experiment.	39
3.4	Chemical analysis (%) of the weaning diets for productive performance	
	experiment.	40
4.1	Effect of inorganic salt on growth and protease production	53
4.2	Effect of media additive on growth and protease production.	54
4.3	The optimum medium contents and cultural conditions for protease	
on	production of Bacillus sp. FAS01.	56
4.4	Effect of carriers on the activity of crude protease powder	58
4.5	Cell cytotoxicity of cell culture and crude protease powder from Bacillus sp.	e (
	FAS001.	64
4.6	In vitro digestibility of dry matter (DM), crude protein (CP), crude fiber	
	(CF), ether extract (EE), ash and nitrogen free extract (NFE) in four	
	different diets.	65

LIST OF TABLES

(continued) Table Page 4.7 Production performance and feed cost of piglets offered diets with or without enzymes. 69 4.8 Growth performance of piglets offered diets with or without enzyme supplementation. 72 4.10 Blood urea nitrogen of piglets offered diets with or without enzyme 73

âðânấuหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figur	e	Page
2.1	Swine production in Thailand (1989-2001)	4
2.2	Mode of action of trypsin inhibitor (TI)	7
2.3	Scanning electron micrographs of mid-jejunal sections of the small intestine of	
	two soy-sensitive animals challenged with either a soy flour (left) or an ethanol	
	extracted traditional soy concentrate (right) containing diet	10
2.4	The effect of pretreatment of soybean meal with acid -/ + protease on	
	piglets performance in the first 7 days after weaning	17
2.5	The effect of protease pretreatment of raw or autoclave full fat soybeans on	
	grower pig performance (32 kg start weight)	17
3.1	Experimental pens.	41
4.1	Protease production of <i>Bacillus</i> sp. FAS 001 –019	44
4.2	Stability of proteases at pH 3.0	44
4.3	Thermal stability of protease after incubation at 55-85 °C	45
4.4	Thermal stability of protease after incubation at 75 °C	46
4.5	Effect of protease inhibitors on crude protease activity	47
4.6	Effect of SBM concentrations on growth and protease production of	
	Bacillus sp. FAS001	48
4.7	Effect of initial pH on growth and protease production of <i>Bacillus</i> sp.	<u> </u>
	FAS001	49
4.8	Effect of cultivation temperature on growth and protease production of	ity
	Bacillus sp. FAS001	50
A 4.9	Effect of shaking rate and ratio of media to air content on growth (a) and	
	protease production (b) of Bacillus sp. FAS001	52
4.1	0 Effect of inoculum on growth and protease production	55
4.1	1 Time cause on growth (a) and protease production (b) of <i>Bacillus</i> sp. FAS	
	001	57

LIST OF ILLUSTRATIONS

(continued) 13181 Figure Page 4.12 Effect of temperature and time on protease activity of unopened (a) and opened (b) protease powder from Bacillus sp. FAS001 during storage 59 4.13 Effect of temperature and time on protease activity of unopened (a) and opened (b) imported enzyme (IE1) during storage 4.14 Effect of pH on the activity of crude protease from Bacillus sp. FAS001 60 4.15 Effect of temperature on the activity of crude protease from *Bacillus* sp. 60 **FAS001** 61 4.16 Activity profiles of crude protease from Bacillus sp. FAS001 4.17 In vitro digestibility of nutrients (DM, CP, CF, EE, Ash and NFE) of piglet 63 (a), growing pig (b), finishing pig (c) and pregnant pig (d) diets with or without enzymes 4.18 Growth performance of piglets given diets with or without enzymes. 67 4.19 Blood urea nitrogen of piglets given diets with or without enzymes 69 73 AI IIN

âðân≲ົ້ມหาວົກອາລັອເຮືອວໃหມ່ Copyright © by Chiang Mai University All rights reserved

LIST OF APPENDIX TABLES

Table ABLE AND A	Page
1 ANOVA: Effect of soybean meal concentration on growth and protease	8
production of <i>Bacillus</i> sp. FAS001	107
2 ANOVA: Effect of initial pH on growth and protease production of <i>Bacillus</i>	107
sp. FAS001	107
3 ANOVA: Effect of cultivation temperature on growth and protease	107
production of <i>Bacillus</i> sp. FAS001	107
4 ANOVA: Effect of agitation rate and ratio of media to air content on growth	107
and protease production of <i>Bacillus</i> sp. FAS001	108
5 ANOVA: Effect of media additive on growth and protease production of	100
Bacillus sp. FAS001	108
6 ANOVA: Effect of inorganic salt on growth and protease production of	100
	108
Bacillus sp. FAS001	108
7 ANOVA: Effect of inoculum size on growth and protease production of P_{1} is the EASOON	100
Bacillus sp. FAS001	109
8 ANOVA: Effect of cultivation time on growth and protease production of	100
Bacillus sp. FAS001	109
9 ANOVA: The activity of protease powder with different carriers	109
10 ANOVA: Effect of enzyme supplementation on <i>in vitro</i> digestibility of	KU
piglet diet	110
11 ANOVA: Effect of enzyme supplementation on <i>in vitro</i> digestibility of	rsity
growing pig diet	110
12 ANOVA: Effect of enzyme supplementation on <i>in vitro</i> digestibility of	ea
finishig pig diet	111
13 ANOVA: Effect of enzyme supplementation on <i>in vitro</i> digestibility of	
pregnant pig diet	111
14 ANOVA: Initial weight of piglets	112

LIST OF APPENDIX TABLES

(continued) Table Page 15 ANOVA: Effect of enzyme supplementation on final weight of piglets 112 16 ANOVA: Effect of enzyme supplementation on average total feed intake 112 17 ANOVA: Effect of enzyme supplementation on average daily feed intake at first experimental week.18 ANOVA: Effect of enzyme supplementation on average daily feed intake at second experimental week 113 18 ANOVA: Effect of enzyme supplementation on average daily feed intake at second experimental week 113 19 ANOVA: Effect of enzyme supplementation on average daily feed intake 113 at third experimental week 20 ANOVA: Effect of enzyme supplementation on average daily feed intake at fourth experimental week 114 21 ANOVA: Effect of enzyme supplementation on average daily feed intake at fifth experimental week 114 22 ANOVA: Effect of enzyme supplementation on average daily feed intake at sixth experimental week 114 23 ANOVA: Effect of enzyme supplementation on average daily feed intake for whole experimental period 115 24 ANOVA: Effect of enzyme supplementation on average daily gain at first 115 experimental week 25 ANOVA: Effect of enzyme supplementation on average daily gain at second experimental week 26 ANOVA: Effect of enzyme supplementation on average daily gain at third experimental week 116 27 ANOVA: Effect of enzyme supplementation on average daily gain at fourth experimental week 116 28 ANOVA: Effect of enzyme supplementation on average daily gain at fifth

116

xviii

LIST OF APPENDIX TABLES

(continued) Table Page 29 ANOVA: Effect of enzyme supplementation on average daily gain at sixth experimental week 117 30 ANOVA: Effect of enzyme supplementation on average daily gain for whole experimental period 117 31 ANOVA: Effect of enzyme supplementation on feed conversion ratio at first experimental week 117 32 ANOVA: Effect of enzyme supplementation on feed conversion ratio at second experimental week 118 33 ANOVA: Effect of enzyme supplementation on feed conversion ratio at third experimental week 118 34 ANOVA: Effect of enzyme supplementation on feed conversion ratio at fourth experimental week 118 35 ANOVA: Effect of enzyme supplementation on feed conversion ratio at fifth experimental week 119 36 ANOVA: Effect of enzyme supplementation on feed conversion ratio at 119 sixth experimental week 37 ANOVA: Effect of enzyme supplementation on feed conversion ratio gain for whole experimental period 119 38 ANOVA: Blood urea nitrogen levels at initial experimental week. 39 ANOVA: Effect of enzyme supplementation on blood urea nitrogen levels at second experimental week 40 ANOVA: Effect of enzyme supplementation on blood urea nitrogen levels 120 at fourth experimental week 41 ANOVA: Effect of enzyme supplementation on blood urea nitrogen levels at sixth experimental week 121

ABBREVIATIONS AND SYMBOLS

ADDREVI	ATTONS AND STUDOLS
Abbreviations or symbols	El Star Term
	and
%	percent
a	is equal to
<	is less than
	is greater than
	micron
°C	degree centigrade or Celsius
μg	microgram
μ	microliter
	per
H Y	plus
3,4 DCI	3,4-dichloroisocoumarin
ADFI	average daily feed intake
ADG	average daily gain
AME	apparent metabolizable energy
ANFs	anti-nutritional factors
ANOVA	analysis of variance
AOAC	Association of Official and Analytical Chemists
Copy Apont S by	apparent protein digestibility
ATCC	American Type Culture Collection
BIOTEC	National center for Genetic Engineering and
	Biotechnology
BPN9	bacterial protease Nagase
BUN	blood urea nitrogen
С	carbon

	CAFOs	concentrated animal feeding operations
	ССК	cholecystokinin
	CF	crude fibre
	CFU	colony-forming units
	cm	centimeters
	Co., Ltd.	Company Limited
	CO ₂	carbon dioxide gas
	Con	control
	СР	crude protein
	CRD	completely randomized design
	CWA	The Clean Water Act
	CZMA	The Coastal Zone Management Act
	DAN	diazoacetyl-DL-norleucine methyl ester
6	df	degrees of freedom
	DFP	diisopropylfluorophosphate
	DM	dry matter
	DMEM	Dulbecco's Modified Eagle's Medium
	DMSO	dimethyl sufoxide
	DNS	dinitrosalicylic acid
	e.g.	exempli gratia (for example)
	E-64	L-trans-3-carboxyoxiran-2-carbonyl-L-
		leucylagmatine
	ed., eds.	editor (s)
0	EDTA	ethylene diamine tetraacetic acid
818	EEISIIKI	ether extract
	EGTA	ethylene glycol-bis(2-aminoethyl)-N,N,N',N'-
Cody	right C by	tetraacetic acid Mai University
	EPNE	1,2-epoxy-3-(p-nitrophenoxy)propane
A	et al. r g h	et alia (Latin), and other(s)
	F	F values
	FAS001 1.0X	crude protease from Bacillus sp. FAS001 (same
		protease activity as import enzyme1)

xxi

	FAS001 1.5X	crude protease from Bacillus sp. FAS001 (1.5
		times protease activity of import enzyme1)
	FCR	feed conversion ratio
	FTU	phytase unit
	g A	gram
	GLM	the general linear model procedure
	h	hour
	IE1	import Enzyme 1
	IE2	import Enzyme 2 (same protease activity as
		import enzyme1)
	kDa	kilo dalton
8	kg	kilogram
		Titer
2	LF	liquid fermentation
	m	meter
	М	molar
	mg	milligram
	min.	minute
	MJ	mega joule
	ml	milliliter
	mm	millimeter
	MS	mean square
	MTT	3-(4,5-dimethylthiazoyl-2-yl) 2,5 diphenyltetra-
6		zolium bromide
848	nsikaa	
	N	nitrogen
Copy	NA O DV	nutrient agar Mai University
	NB	nutrient broth
		not determined C S C I V C O
	NDF	Neutral detergent fibre
	NFE	nitrogen free extract
	NRC	National Research Council
	NSP	non starch polysaccharide

xxii

	logy Development
Agency	
O ₂ oxygen gas	
OD optical density	
P Probability	
PCMB p-chloromercuribenzoate	
pH negative logarithm of hydroge	en ion activity
PMF phenylmethanesulfonyl fluorid	de
ppm parts per million	6
Psi pounds per square inch	
rpm rounds per minute	
S.D. standard deviation	30%
SBM soybean meal	-502
SBTI soybean trypsin inhibitor	200
Sig. significant level	4
SP storage proteins	6
sp., spp. species	5
SPI soy protein isolate	
SPSS the Statistical Package for Soc	cial Science
SS sum of square	
SSF solid state fermentation	
TCA trichloroacetic acid	
TKN total kjeldahl nitrogen	
TLCK tosyl-L-lysine chloromethyl k	etone
TSB TSB tryptic soy broth	SIGINI
UK. United Kingdom	
USA. The United States of America	University
v/v volume by volume	
A v/w r s h volume by weight s e	rved
VMPs vegetable proteins meals	
w/v weight by volume	
w/w weight by weight	
Zn zinc	