Chapter 4

Results

4.1 Field survey

STA MAI

For four villages, about 27 to 31 persons, ages between 20 to 68 years old were interviewed each village. Household sizes varied from two to ten persons, with averages between 5.2 to 5.8 persons. Within each household only one to four or average two persons were working in the farms. Ethnic groups were Tai Lu in Ban Ladthahae (LTH) and Khamu in Ban Houyleung (HL) of Pak Ou (PO) district and Khamu in Ban Houyman (HM) and Khamu plus Laolum in Ban Thapho (TP) of Phonxay (PX) district. Population sizes were between 289 to 497 with the highest in LTH and lowest in HM. All of them eat glutinous rice (Table 4.1.1).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Table 4.1.1 Number of household, populations, ethnic group and main staple in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang ે પ્રશાસિષ ? province

					Descriptiv	e Statistic	2	Number of		Ethnic	Main
	District	Villages	Characterization	Min	Max	Mean	SD	Households	Population	group	staple
	РХ	НМ	n=27 Interviewer age (year)	26	63	45	11.1	50	289	Khamu	G
	6		Household size (person)	3	10	5.8	1.8		3		
		TD	Farm labors (person)	111	4.	2	0.6	<i>C</i> 0	077	171	-
	500	S IP	n=27 Interviewer age (year)	20	64	33	10.2	68	377	Khamu and Laolum	G
			Household size (person)	3	10	5.5	2				
		1	Farm labors (person)	1	4	2	0.6		6		
	РО	ETH	n=31 Interviewer age (year)	27	68	46	11.4	95	497	Tai lue	G
		1	Household size (person)	3	9	5.2	1.7		× // -		
			Farm labors (person)	1	4	3	0.9	SY/			
		HL	n=27 Interviewer age (year)	27	65	43	10.6	60	336	Khamu	G
		-	Household size (person)	2	10	5.6	2				_
6 2	2.	20	Farm labors (person)		4	2	0.8		2	1.21	
G U	Total						9 (273	1499		
	SD= sta	ndard de	viation, G=glu	tinous	s rice						
Co	pyri	ight	© by	C	hia	ng	M	ai U	niver	'sity	7
ΑΙ		ľ	i g h	t	S	r	e	s e	ľV	ec	

Farmer management of varietal diversity was seen in these areas. A total of 63 samples representing 47 rice varieties were grown by farmers in four villages (Table 4.1.2). Number of varieties grown per village ranged from 13 in TP and 16 to 17 in the rest. Most of varieties were glutinous types, only 8% of non-glutinous were found. In addition, 83% of these samples were upland varieties and 17% were lowland varieties. The highest proportion of upland varieties was found in PX district which covered 94% in HM and 85% in TP, whereas in PO district 75% was maintained in LTH and 76% in HL. The average proportion of varieties planted with early, medium and late maturing varieties was 36, 35 and 29%, respectively. Farmers in PX district used more early than medium and late maturing varieties.

Table 4.1.2 Number and percentage (in parenthesis) of ecosystem, endosperm type and maturity of rice varieties in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Ecosystem Endosperm	Matur	rity type o	of rice
District Villages <u>Type</u> Total	P 1	Varieties	
UL LL G N-G	Early	Medium	Late
PX HM 16 1 16 1 17	24	26	16
	(36)	(39)	(24)
TP 11 2 12 1 13	6	24	18
$Convright^{(85)} (15) (92) (8) Mat$	(13)	(50)	(38)
PO LTH 12 4 15 1 0 16	33	18	21
(75) (25) (94) (6)	(46)	(25)	(29)
HL 13 4 15 2 17 C	27	19	18
(76) (24) (88) (12)	(42)	(30)	(28)
Total 52 11 58 5 63	90	87	73
(83) (17) (92) (8)	(36)	(35)	(29)

UL=upland rice, LL=Lowland rice, G=glutinous rice, N-G=non-glutinous rice, N=number of varieties.

Popular variety planted by farmers in each district was different. Within PX district popular variety had only three in HM, with Mak khuea yai (MKY), Do deng (DD) and Mai hok (MH) which covered 59, 52, and 48%, respectively, and TP at two popular varieties, with Kao chuk (KCH) and Luem phouw (LP) which covered 52 and 48% of household survey, respectively (Table 4.1.3 and Figure 4.1.1). For PO district had only one, and same variety in both villages as Phae pee (PP) was preferred in LTH and HL which covered 71 and 48% of household survey, respectively (Table 4.1.3 and Figure 4.1.2). However, farmers in each village were still conserved minor varieties in their fields.

Table 4.1.3 Rank and proportion of rice varieties (no of household) in four villages,Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and BanLadthahae (LTH)and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabangprovince

		XY		Number of hous	ehold	planted and varie	ty name		
	Donk		PX	district			РО	district	
	Kalik	НМ	Λ	ТР		LTH	× /	HL	
		Variety name	N	Variety name	Ν	Variety name	N	Variety name	Ν
	1	Mak khuea yai	16	Kao chuk	14	Phae pee	22	Phae pee	15
	2	Do deng	14	Luem phouw	12	Kao nok	8	Kao khao	9
	3	Mai hok	13	Mak khuea yai	5	Phae do	7	Phae kang	8
	4	Nam man	3	Kao louang	4	Man pou	7	Phae do	7
N 21	5	Do khao	3	Mak khuea noi	3	Nam paa	6	Nok khor	5
	6	Mak khuea noi	2	Kao leung	3	Nam mak	4	Lai yai	3
	7	Kao chuk	2	Kao deng	1	Phae kang	3	Kao do det	3
	8	Kao bung	2)2	Deng phuey	1	Leung ban	3	Kao nok	3
	9	Deng phuey	2	Kao bung	dı	Do dai	3	Chao lao soung	2
	10	Kao kum	2	Nam man	1	Na phon	2	Kao kum	2
	11	Chao do	1	Pak lueng	1	Kao hea	2	Kao kan	1
	12	Kao tum	15	Chao tum	1	Kao kan	1	La boun	1
	13	Kao phae	1	Thadokham	1	Kao deng	1	Chao peek	1
	14	Mak hin soung	1	-		Mon do	1	Kao deng	1
	15	Kao mee	1	-		Chao do	1	Taa loy	1
	16	Kao dum	1	-		RD16	1	Nam paa	1
	17	Taa loy	1	-		-		Do khao	1

N= number of household

Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Most of farmers planted different varieties in their fields. Some farmers in LTH planted five different rice varieties. Number of variety per household ranged from 1-5 varieties, with averages between 2 to 2.56 varieties (Table 4.1.4). Seed flow refers to exchange and transport of germplasm within or between villages. In the villages, about 49 to 91%, of farmers exchanged seed among members of the community, with the highest in TP and lowest in HL, about 9 to 51% exchanged seed between villages (Table 4.1.4). The seed for next crop were kept in anywhere inside the house and storage. Farmers in PO district maintained seeds in sack/bags only, whereas PX district kept seeds in sack/bags and bamboo baskets.

Table 4.1.4 Number of rice varieties per household, rice seed exchange and storage in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH)and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

-				07	G.			
	Divisi	1711	Varieties/	household	Seed ex	change	Seed st	torage
	District	Villages	Range	Average	Within village (%)	Between village (%)	Sack/bag (%)	Bamboo baskets (%)
	PX	HM	1-4	2.56	69	31	75	25
		TP	1-4	2	91	9	81	19
		~		•			-	2
22	PO	LTH	1-5	2.37	66	34	C 100	0
9 U		HLU	1-3	2.35	49 G	51	100	0
	Average	. 0		2.3	69	31	89	11
Co	pyrig	ght⊎	by	/ Ch	iang l	Mai	Unive	rsity
		r i	g h	t s	6 r	es	erv	e d

4.2 Characterization of local rice varieties

4.2.1 Farmers' seed characterization

Husk color

About 7 to 10 samples per village had all seeds with straw hull. Only 1 to 2 samples within PX district found all seeds with reddish brown, 1 to 4 samples in HM, LTH and HL showed all seeds with brown line with straw whereas purple line with straw was found at HM and brown color was showed in PO district (Table 4.2.1). The diversity index based on husk color range from 0.13 to 1.02, the highest was collected from HM (MH).

Pericarp color

Pericarp of most samples were all white, one sample each from HM and HL were all purple and some had all red pericarp about 2 to 3 samples within each village. Diversity index of pericarp color varied from 0 to 0.54 (Table 4.2.2).

Endosperm types

Most of samples were glutinous rice. One to two samples from HM, LTH and HL were non-glutinous. Non-glutinous type mixed within seed lots ranged from 1 – 70 %. The highest showed in HL (70%) while the least found in TP (15%). Diversity index ranged from 0 to 0.61 (Table 4.2.3).

<u>Seed length</u>

For seed length, seed lots distributed from 7.3 to 12.7 mm. Mean seed length of individual seed lots ranged from 8.6 to 11.2 mm (Table 4.2.4). Average seed length of each village were between 9.4 to 10.2 mm, with seed lots in HM was the lowest (9.4 mm) and seed lots in TP was the highest (10.2 mm). When compared with the pure line variety check, KDML105, all seed lots were extra long grain and

most samples were more diverse. Coefficient of variation (CV, %) in seed length of each seed lots varied from 3.0 to 6.4 % (Figure 4.2.1), seed lots in LTH (DDa) and HL (KKH) was the lowest and seed lots in TP (PL) was the highest.

ายหต

Seed width

Seed width of individual seed lots ranged from 2.3 to 4.9mm. Mean seed width of each seed lots distributed from 2.8 to 4.3mm (Table 4.2.5 and Figure 4.2.2). Average seed width of villages were between 3.5 to 3.7mm. When compared with the pure line variety check, KDML105, all seed lots were larger and most samples were more diverse.

Seed shape

Seed shape variation based on seed length and width ratio to classify grain into round, slender, and large grain type (Oka, 1988) was used. All but three of all samples were classified into large grain types and the rest were slender grain type (Figure 4.2.3).

<u>100 seeds weight (g)</u>

Overall 100 seeds weight of individual seed lots distributed from 2.95 to 5.41 g. Average 100 seeds weight of villages were between 3.85 to 4.32g, with seed lots in HL was lowest (3.85g) and seed lots in TP was highest (4.32g) (Table 4.2.6).

Copyright[©] by Chiang Mai University All rights reserved

			Husk c	olor			
	P	X district		1	P	O district	
	НМ		TP		LTH	901	HL
MKY	Straw	КСН	Straw	PP	Straw	PP	Straw
DD	Brown line with straw, purple line with straw (0.2)	LP	Straw	KN	Straw, purple line with straw (0.65)	РК	Brown
КСН	Brown line with straw, purple line with straw, straw (0.53)	МКҮ	Straw	PD	Brown	PD	Brown
MKN	Straw	MHN	Straw	РК	Brown	KN	Straw, purple line with straw (0.69)
NM	Straw, reddish brown, brown line with straw (0.69)	KD	Reddish brown	MP	Brown line with straw	LY	Straw, purple line with straw (0.34)
МН	Straw, reddish brown, brown line with straw (1.02)	DP	Reddish brown	NMA	Brown line with straw	NKH	Straw, purple line with straw (0.46)
KB	Straw	KB	Straw	LB	Straw	KDD	Straw
DP	Reddish brown	NM	Straw, brown line with straw (0.06)	КН	Straw, brown line with straw (0.69)	CHLS	Straw
KKu	Straw	KLO	Straw, brown line with straw (0.65)	KK	Brown line with straw	ККи	Straw
KT	Straw	KLE	Straw	KD	Brown line with straw, reddish brown (0.3)	КК	Brown line with straw
CHD	Straw	PL	Brown line with straw, purple line with straw, straw (0.69)	-MD	Straw	LB	Straw
KP	Straw	CHT	Straw	CHD	Straw	CHP	Straw
MHS	Brown line with straw	TDK	Straw	RD16	Straw	KD	Brown line with straw
KM	Purple line with straw	-		NP	Straw	TL	Straw
KDu	Purple line with straw	1 1 1	9019	DDa	Straw	NP	Straw
KD	Straw, brown line with straw			NPH	Straw, brown line with	ККН	Straw, brown line with straw
DKH	(0.65) Straw	<u>C</u> .	by Chia	ang	straw (0.3)	Д МКН	(0.33) Straw, brown line with straw (0.37)
Number	in parenthesis was Shar	nnon-Weaver	Index (H') value.	r	ese	r	ved

Table 4.2.1 Husk color of rice varieties in farmers' seed lots in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay(PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

		00	Pericar	p color			
	PX	district		10	PO dist	trict	
	НМ		TP	5	LTH	5.1	HL
МКҮ	White	КСН	Red	РР	White, red (0.33)	РР	White
DD	White	LP	White	KN	White, red (0.28)	РК	Red
КСН	White	МКҮ	White, red (0.4)	PD	Red	PD	Red
MKN	White	MHN	White ,red (0.13)	РК	Red	KN	White
NM	White	KD	White	MP	White	LY	Red
MH	White	DP	White	NMA	White	NKH	White
КВ	White	KB	White, red (0.33)	LB	White	KDD	White
DP	White, red (0.5)	NM	White	КН	White, red (0.46)	CHLS	White
KKu	Purple	KLO	White, red (0.28)	KK	White	KKu	Purple
KT	White	KLE	White	KD	White	КК	White
CHD	White	PL	White, red (0.42)	MD	White	LB	White, red (0.49)
KP	Red	СНТ	White	CHD	White, red (0.54)	CHP	White, red (0.25)
MHS	White	TDK	White	RD16	White	KD	White
KM	Red			NP	White	TL	White
KDu	White			DDa	White	NP	White
KD	White	-		NPH	White	KKH	White
DKH	White				S	DKH	White
Number in p	arenthesis was Shar	nnon-Weaver I	ndex (H') value.	U -IC	OIG		InJ
Сор	yright		oy Chi	ang M	Mai U	nive	rsity
ΑΙ	l r	ig	h t s	r	ese	r v	e d

Table 4.2.2 Pericarp color of rice varieties in farmers' seed lots in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay(PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

 Table 4.2.3 Percentage of non-glutinous, glutinous and Shannon-Weaver Index (H') of rice varieties in farmers seed lots in four villages,

 Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO)

 district, Luang Prabang province

							Percent of	non-glutinous				. 2			
		5	PX dis	strict							ł	PO district			
	НМ				ТР			3	LTI	Н				HL	
Variety name	% N-G	% G	H'	Variety name	% N-G	% G	H'	Variety name	% N-G	% G	H'	Variet name	y % N-G	% G	H'
MKY	0	100	0	KCH	0	100	0	РР	27	73	0.58	PP	302	100	0
DD	2	98	0.1	LP		100	0	KN	0	100	0	РК	20	100	0
КСН	0	100	0	MKY	15	85	0.42	PD	0	100	0	PD	0	100	0
MKN	0	100	0	MHN	0	100	0	РК	0 /	100	0	KN	0	100	0
NM	11	89	0.35	KD	0	100	0	MP	0	100	0	LY	9	91	0.3
MH	0	100	0	DP	1	99	0.06	NMA	0	100	0	NKH	9	91	0.3
KB	1	99	0.06	КВ	0	100	0 2	LB	0	100	0	KDD	1	99	0.06
DP	16	84	0.44	NM	1	99	0.06	KH	5-0-2	100	0	CHLS	5 100	0	0
KKu	0	100	0	KLO	11	89	0.35	КК	1	99	0.06	KKu	0	100	0
KT	0	100	0	KLE	0	100	0	KD	-0	100	0	КК	0	100	0
CHD	100	0	0	PL	3	97	0.13	MD	1	99	0.06	LB	0	100	0
KP	0	100	0	CHT	0	100	0	CHD	100	0	0	CHP	100	0	0
MHS	0	100	0	TDK	0	100	0	RD16	2	98	0.1	KD	0	100	0
КМ	9	91	0.3					NP	0	100	-0	TL	0	100	- 0
KDu	0-	100	0				-	DDa	0	100	0	NP	0	100	0
KD DKH		100 100		\mathbb{C}	by	C	hi	NPH		100		KKH DKH		30 100	0.61
N-G=nor	n-glutino	ous, G=g	glutinous	1 2	h	t	S		r	2	S			e	d

								S	Seed le	ngth (mm)			-						
				Р	X district				D	7/7			0	PO dist	rict				
		HM		9			TP			5		LTH					HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)
MKY	9.1	7.8-10.1	0.5	5.6	КСН	9.8	8.4-10.9	0.5	4.6	> PP	9.2	8.0-10.5	0.5	5.9	PP	9.2	8.1-10.1	9.2	9.2
DD	8.6	7.8-9.7	0.4	4.2	LP	11.0	9.7-12.6	0.7	6.0	KN	9.6	8.3-11.3	0.5	5.0	РК	10.2	9.3-11	0.4	3.6
KCH	8.9	7.3-10	0.5	5.2	MKY	9.0	8.1-9.8	0.4	4.0	PD	10.6	9.4-11.8	0.5	4.6	PD	10.2	8.9-11.1	0.4	3.8
MKN	8.6	7.5-9.4	0.4	5.2	MHN	9.7 🥿	8.5-11.1	0.4	4.4	РК	10.2	8.9-11.6	0.4	4.3	KN	9.6	8.8-10.4	0.4	3.9
NM	10.3	9.0-11.2	0.5	4.6	KD	10.8	9.8-11.8	0.5	4.7	MP	9.1	8.2-9.9	0.4	3.9	LY	10.0	9.0-10.8	0.4	4.4
MH	10.8	9.7-12.1	0.5	4.5	DP	10.7	9.6-11.6	0.4	3.7	NMA	9.3	8.7-10.2	0.3	3.2	NKH	8.7	7.4-9.6	0.4	4.7
KB	9.4	7.9-10.8	0.5	5.5	КВ	9.9	9.0-10.9	0.4	4.2	LB	10.3	9.2-11.3	0.4	4.2	KDD	8.9	7.7-10	0.4	4.9
DP	10.1	8.9-11.6	0.6	5.5	NM	10.3	8.7-11.5	0.6	6.1	КН	10.3	8.7-11.7	0.6	6.1	CHLS	10.4	9.3-11.2	0.4	3.8
KKu	9.7	8.5-10.5	0.4	4.4	KLO	9.5	8.1-10.4	0.4	4.7	КК	10.8	9.7-12	0.4	4.1	KKu	10.5	9.8-11.4	0.4	3.3
KT	9.2	8.1-10.5	0.5	5.7	KLE	11.2	10.3-12.2	0.4	3.8	KD	10.6	9.0-11.8	0.6	5.4	КК	11.2	9.8-12.1	0.4	3.7
CHD	9.2	8.2-10.6	0.5	5.2	PL	10.9	9.5-12.7	0.7	6.4	MD	9.9	9.2-11.1	0.4	3.8	LB	10.3	9.3-11.1	0.4	3.7
KP	9.2	8-10.1	0.4	4.5	СНТ	9.8	9.1-10.9	0.4	4.1	CHD	9.6	8.5-10.5	0.4	4.5	CHP	9.9	9.1-10.7	0.4	3.9
MHS	8.9	7.6-10.3	0.5	6.1	TDK	9.7	8.7-10.7	0.4	4.3	RD16	10.7	9.7-11.5	0.4	4.2	KD	10.1	9.3-11.1	0.4	3.5
KM	8.9	8.0-10.2	0.4	4.1	-	-	-	-	- 1	NP	10.5	9.0-11.4	0.4	4.1	TL	10.3	8.8-11.2	0.5	4.7
KDu	9.7	8.8-10.3	0.4	3.8	-	-	-	-	-	DDa	9.3		0.3	3.0	NP	10.6	9.8-11.4	0.4	3.3
KD	8.9	8.0-10	0.4	4.9	-		- 5		-	NPH	10.5		0.4	3.3	ККН	9.6	9.1-10.2	0.3	3.0
DKH	9.5	8.8-10.2	0.3	3.3		\mathbf{n})-[-		G		L-C		DKH	9.4	8.2-10.6	0.5	5.0
Mean	9.4		•	1.1		10.2			-		10.03				•	9.9	•		
Range	8.6-10	.8	18	m	T	9-11.2) y			ang	9.1-10.8					8.7-11	.2511	Y	
M = r	nean,	R = ran	ige, SI	$\mathbf{D} = \mathbf{s}$	tandard dev	viation	, CV = C	oeffic	ient c	of Variation		es		e	r		e	d	

Table 4.2.4 Seed length of local rice varieties in farmers' seed lots in four villages, Ban Houyman (HM) and Ban Thapho (TP) ofPhonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

					0			Se	ed widt	h (mm)				5					
				PX	district					\overline{D}	7			PO dis	strict				
		HM	4				TP		N			LTH					HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)
MKY	4.0	3.1-4.4	0.2	5.8	КСН	4.2	3.8-4.7	0.2	4.1	PP	3.4	3.0-3.8	0.1	4.4	PP	3.3	3.0-3.9	0.1	4.4
DD	3.8	3.0-4.3	0.2	5.6	LP	3.8	3.3-4.3	0.2	6.4	KN	4.1	3.5-4.5	0.2	4.0	РК	3.1	2.8-3.3	0.1	3.2
KCH	3.9	3.4-4.4	0.2	5.0	MKY	3.9	3.4-4.2	0.2	4.4	PD	2.8	2.4-3.2	0.2	5.4	PD	3.1	2.8-3.4	0.1	3.3
MKN	3.9	3.4-4.3	0.2	4.2	MHN	3.8	3.4-4.1	0.1	3.9	РК	3.3	2.3-3.6	0.2	5.7	KN	4.0	3.6-4.4	0.2	4.7
NM	3.7	3.2-4.4	0.2	6.5	KD	3.5	3.1-4.0	0.2	5.7	MP	4.1	3.4-4.4	0.2	3.9	LY	3.8	3.2-4.2	0.2	4.6
MH	3.5	2.9-3.9	0.2	5.4	DP	3.4	3.1-3.8	0.1	4.2	NMA	4.0	3.4-4.3	0.2	4.5	NKH	3.7	3.3-4	0.1	3.7
KB	3.6	3.2-4.2	0.2	4.9	КВ	3.9	3.1-4.3	0.2	4.1	LB	3.9	3.4-4.3	0.2	4.5	KDD	3.9	3.7-4.2	0.1	2.5
DP	3.9	3.3-4.5	0.2	6.1	NM	3.8	3.4-4.3	0.2	4.7	КН	3.9	3.4-4.2	0.2	4.2	CHLS	3.2	2.9-3.9	0.1	4.5
KKu	3.6	3.1-4.1	0.2	6.3	KLO	4.3	3.9-4.8	0.2	5.0	КК	3.5	3.1-3.9	0.2	6.1	KKu	3.8	3.2-4	0.2	4.0
KT	3.7	3.2-4.2	0.2	5.4	KLE	3.5	3.1-4.0	0.2	5.2	KD	3.5	3.1-4.2	0.2	6.5	КК	3.6	3.1-4	0.2	5.0
CHD	3.4	2.9-3.9	0.2	5.4	PL	3.7	3.3-4.3	0.2	6.5	MD	3.9	3.4-4.1	0.1	3.5	LB	3.1	2.6-3.3	0.1	4.2
KP	3.2	2.5-3.7	0.2	5.2	CHT	2.9	2.5-3.2	0.1	4.5	CHD	3.4	3.0-3.8	0.2	4.5	CHP	3.3	3.0-4	0.2	5.0
MHS	4.1	3.6-4.6	0.2	4.3	TDK	2.9	2.4-3.1	0.1	5.1	RD16	2.8	2.4-3.2	0.2	5.5	KD	3.7	3.0-4.1	0.2	4.6
KM	3.5	3.1-3.9	0.2	5.1	-	-	_	-	-	NP	3.6	3.3-3.9	0.1	3.7	TL	3.5	3-4.1	0.2	6.0
KDu	3.4	3.0-3.9	0.2	6.3	-	-	-	-	-	DDa	4.0	3.3-4.9	0.2	4.8	NP	3.6	3.3-3.9	0.1	3.2
KD	3.4	3.0-3.9	0.2	5.5		-			<u> </u>	NPH	3.6	3.2-4.2	0.1	4.0	ККН	3.7	3.0-4	0.1	4.0
DKH	3.6	3.2-4.	0.1	3.5		7- 1)-[- 3			3-1]-[DKH	3.8	3.3-4.1	0.1	3.8
Mean	3.7				\bigcirc	3.7			•		3.6		•		•	3.5			
Range	3.2-4.		g	nt		2.9-4.	3			ang	2.8-4.		al	U	nn	3.1-4	rsi	ILY	
M = me	ean, R	R = range	e, SD	= star	ndard devia	tion,	$\mathbf{CV} = \mathbf{C}$	oeffic	ient of	Variatio	n	e	S	e	r	\mathbf{V}	e	C	

Table 4.2.5 Seed width of local rice varieties in farmers' seed lots in four villages, Ban Houyman (HM) and Ban Thapho (TP) ofPhonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Table 4.2.6 100 seeds weight of rice varieties in farmers' seed lots in four villages,

 Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban

 Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang

 province

	0	9			0		
			100 seeds	weight (g)			
	PX distr	rict	- 00		PO di	strict	
	НМ		ТР	L	тн 🛛	o, h	łL
Variety name	100 grain weight (g)						
MKY	4.20	КСН	5.16	РР	3.4	PP	3.1
DD	3.70	LP	5.41	KN	4.2	РК	3.3
КСН	4.10	MKY	3.86	PD	3.1	PD	3.4
MKN	3.80	MHN	4.22	РК	3.7	KN	3.4
NM	4.30	KD 🚽	4.19	MP	4.2	LY	4.4
MH	4.80	DP	4.29	NMA	4.3	NKH	3.5
КВ	4.10	КВ	4.23	LB	4.6	KDD	3.9
DP	4.30	NM	4.67	кн	4.5	CHLS	3.8
KKu	4.10	KLO	4.54	КК	4.3	KKu	3.9
KT	3.90	KLE	4.93	KD	4.2	КК	4.7
CHD	3.80	PL	4.73	MD	4.3	LB	3.1
KP	3.00	CHT	2.95	CHD	3.8	СНР	4.3
MHS	4.50	TDK	2.99	RD16	3.2	KD	4.1
КМ	4.00	-	- 6 -	NP	4.2	TL	4.3
KDu	4.20	-		DDa	3.9	NP	4.2
KD	4.20	-	(mb)	NPH	4,1	ККН	4
DKH	3.60	-	-	-	C Y	DKH	4.1
Mean	4.04	MA.	4.32		4.00		3.85
Range	3-4.8		2.95-5.41	IVP	3.1-4.6		3.1-4.7

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 4.2.1 Average of seed length and coefficient of variation of rice varieties in farmers' seed lots in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.2 Mean of seed width and coefficient of variation of rice varieties in farmers' seed lots in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.3 Grain shapes of rice varieties in farmers' seed lots in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University AII rights reserved

The MAI

4.2.2 Progeny test

Morphological characteristics

Leaf blade color

Low variation was found for leaf blade color. Only three types were observed including, green, purple blotch and purple margin. Leaf blade of most samples were green (Table 4.2.7). Two samples, KDu from HM and PK of LTH had all plants with purple blotch and margin leaf blade, respectively. Three samples from HL showed some variation with sample for leaf blade (Shannon-Weaver Index (H') 0.2 to 0.69). *Basal leaf sheath color*

Both between and within samples diversity were found. Basal leaf sheath color_consisted of green, purple and light purple (Table 4.2.8). Basal leaf sheath of most samples were green. Within PX district, most of samples were uniform with green (22), purple (3) and light purple (1). Only four samples were mixture with H' ranged from 0.2 to 0.42. Likewise, those of most samples in PO district were uniform with green and light purple. Only five samples were mixture with H' range from 0.2 to 0.86.

Leaf blade pubescence

Three scales of identification of leaf blade pubescence can be used, glabrous, intermediate and pubescence. Low variation was found of leaf blade pubescence. Leaf blade pubescence of most samples were glabrous (Table 4.2.9). A few samples in each village was pubescence and intermediate. One sample of each village showed variation within sample for leaf blade pubescence (H'0.2 to 0.21).

Auricle color

Low variation was showed in auricle color. Auricle color consisted of colorless and purple (Table 4.2.10). Auricle of most samples were colorless. Three samples, PK from LTH, and KKH and DKH from HL showed variation within sample for auricle *H*' ranged from 0.2 to 0.5.

Collar color

Only two color pale green and purple were found in collar type. Low variation was found in collar color. Almost samples were pale green homogenous color (Table 4.2.11). Three samples were mixture between pale green and purple collar types (H' 0.2 to 0.56).

Ligule color

For ligule color, almost samples exhibited colorless. Only two colors were observed including colorless and purple (Table 4.2.12). No variation was found in ligule color, except KKH from HL showed variation within sample of ligule color (H' = 0.69).

<u>Ligule shape</u>

Only two types of ligule shape were observed including 2-cleft and acute. Ligule shape of most samples were 2-clef (Table 4.2.13). No variation was found in ligure shape, except KKH from HL showed variation within sample of ligule shape (H' = 0.69). Stigma color

Colorless and purple color was observed in stigma. No variation was found in stigma color. Those of most samples were colorless. Only four samples, PK from LTH and LB, NP and KKH from HL had purple (Table 4.2.14)

Apiculus color

Both between and within samples diversity were found. Apiculus color consisted of straw, brown, red and purple (Table 4.2.15). Within PX district, only 11 samples were uniform for straw, purple or brown apiculus. The rest were mixture with H' ranged from 0.04 to 1.06. In contrast, those of most samples in PO district were uniform with straw (15), brown (5) and purple (5). Only six samples were mixture between straw and brown apiculus types (H' 0.06 to 0.55).

Pericarp color

Variation of diversity was found between and within samples. Four colors with white, purple, brown, and red were found in pericarp (Table 4.2.16). Within PX district, 19 samples were uniform for white, red and purple pericarp, whereas other samples were mixture between white and red pericarp H' varied from 0.2 to 0.57. Likewise, pericarp of most samples in PO district were uniform with white (18), red (4) and one purple. Ten samples were mixture with H' ranged from 0.2 to 0.99.

Husk color

High variation both between and within samples diversity were found. Husk color consisted straw, brown, brown line with straw, purple line with straw, reddish brown, straw with brown spots, straw with reddish brown spots, and reddish brown with straw spots. In PX district, 12 samples were uniform with straw and reddish brown husk. The rest were mixture with H' contributed from 0.06 to 1.47. In contrast, most of samples in PO district were uniform with straw (16), brown (2), and brown line with straw (3). 11 samples were mixed with H' varied from 0.06 to 0.71 (Table 4.2.17).

<u>Awning</u>

Only two types of awning were observed including absent and short awn. Variation of diversity was found within and between samples (Table 4.2.18). Within PX district, most of samples were observed absent. Only six samples were mixed with absent and short and partly awned H' ranged from 0.06 to 0.5. In contrast, awning of most samples in PO district was uniform with absent (18). The rest were mixture with H' ranged from 0.06 to 0.6.

Husk pubescence

Low variation was found for husk pubescence. Only two types were observed including glabrous and pubescence. Husk pubescence of most samples were uniform with glabrous and pubescence (Table 4.2.19). Three samples, KP from HM, KB from TP and KN from LTH showed variation with sample for husk pubescence with *H*' ranged from 0.2 to 0.21.

Cluster analysis from 13 morphological characteristics of 63 samples of local rice varieties by UPGMA methods classified three major clusters. The first cluster consisted of samples showed the presentation of anthocyanin on many parts of the plant such as leaf-blade, leaf-sheath, auricle and stigma (KKH, NP and LB sample in HL and PK in LTH). The second group consisted of samples showed colorless stigma; leaf blade and husk pubescence, and same group of KDML105 and RD6. The last group consisted of samples showed the presentation of anthocyanin on husk color, colorless stigma, leaf blade, husk glabrous and large grain (Figure 4.2.6)

		a)	Leaf bl	ade color			
	PX dist	rict		N.V.		PO district	0.0
	НМ	TF		Killy E	LTH	<u> </u>	HL
МКҮ	Green	КСН	Green	PP	Green	PP	Green
DD	Green	LP	Green	KN	Green	РК	Green
КСН	Green	МКҮ	Green	PD	Green	PD	Green
MKN	Green	MHN	Green	РК	Purple margins	KN	Green
NM	Green	KD	Green	MP	Green	LY	Green
MH	Green	DP	Green	NMA	Green	NKH	Green
КВ	Green	KB	Green	LB	Green	KDD	Green
DP	Green	NM	Green	КН	Green	CHLS	Green
KKu	Green	KLO	Green	КК	Green	KKu	Green
KT	Green	KLE	Green	KD	Green	КК	Green
CHD	Green	PL	Green	MD	Green	LB	Purple margins, green (0.5)
KP	Green	СНТ	Green	CHD	Green	CHP	Green
MHS	Green	TDK	Green	RD16	Green	KD	Green
KM	Green		17. т	NP	Green	TL	Green
KDu	Purple blotch		-	DDa	Green	NP	Green
KD	Green	-		NPH	Green	ККН	Purple margins, green((0.69)
DKH	Green					DKH	Purple margins, green (0.2)
Number in	parenthesis was Shan	non-Weaver In	dex (H') value		195		Joinn
Cor	oyright	© b	y C	hian	g Ma	ai U	niversity
AI	l r	ig	ht	S	re	s e	rved

Table 4.2.7 Leaf blade color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

			Basal leal	i sheath color			
	P	X district			PO d	istrict	
	HM		TP		LTH		HL
MKY	Green	КСН	Purple	PP	Green	PP	Green
DD	Green	LP	Green, light purple (0.2)	KN	light purple	РК	Green
КСН	Purple	МКҮ	Green	PD	Green	PD	Green
MKN	Green	MHN	Green	РК	Green, light purple (0.2)	KN	light purple
NM	Green	KD	Green	MP	Green	LY	light purple
MH	Green	DP	Green	NMA	Green	NKH	Green
KB	Green	КВ	Green, light purple (0.2)	LB	Green	KDD	Green, light purple (0.33
DP	Green	NM	Green, light purple (0.2)	КН	Green	CHLS	Green, light purple (0.68
KKu	Green	KLO	Green	КК	Green	KKu	Green
KT	Green	KLE	Green	KD	Green	КК	Green
CHD	Green	PL	Green, light purple (0.42)	MD	Green	LB	light purple
KP	Green	CHT	Green	CHD	Green	СНР	Green
MHS	Green	TDK	Green	RD16	Green	KD	Green
KM	light purple		YAT T	NP	Green	TL	Green
KDu	Purple	-		DDa	Green	NP	Green
KD	Green	-		NPH	Green	KKH	Green, light purple (0.86
DKH	Green	~	-	-	-	DKH	Green, light purple (0.52
mber in	parenthesis was	Shannon-W	eaver Index (H') value.	IB	18BC	33	JOIK

Table 4.2.8 Basal leaf sheath color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University All rights reserved

	Leaf blade pubescence											
	PX d	istrict		VJ	PC) district						
	НМ		TP	5	LTH	. 5	HL					
MKY	Glabrous	КСН	Glabrous	PP	pubescence	PP	Glabrous					
DD	Glabrous	LP	Glabrous	KN	Glabrous	РК	Glabrous					
КСН	Glabrous	МКҮ	Glabrous	PD	pubescence	PD	Glabrous					
MKN	Glabrous	MHN	Glabrous	РК	pubescence	KN	Glabrous					
NM	Glabrous	KD	Glabrous	MP	Glabrous		Glabrous					
MH	Glabrous	DP	Glabrous	NMA	Glabrous	NKH	Glabrous					
КВ	intermediate	KB	Glabrous, intermediate (0.2)	LB	Glabrous	KDD	Glabrous					
DP	Glabrous	NM	Glabrous	КН	Glabrous	CHLS	Glabrous					
KKu	Glabrous	KLO	Glabrous	КК	Glabrous	KKu	Glabrous					
KT	Glabrous	KLE	Glabrous	KD	Pubescence, glabrous (0.2)	КК	Glabrous					
CHD	Glabrous	PL	Glabrous	MD	intermediate	LB	pubescence					
КР	pubescence, intermediate (0.2)	СНТ	pubescence	CHD	Glabrous	CHP	Glabrous, pubescence (0.21)					
MHS	Glabrous	TDK	pubescence	RD16	Glabrous	KD	Glabrous					
KM	Glabrous	-		NP	Glabrous	TL	Glabrous					
KDu	Glabrous		-	DDa	Glabrous	NP	pubescence					
KD	Glabrous		- S -	NPH	Glabrous	ККН	pubescence					
DKH	pubescence	JU N	гэн		au	DKH	pubescence					
Number	in parenthesis was Sha	nnon-Weaver	r Index (H') value.	iang	, Mai	Univ	ersity					
ΑΙ	ll r	ig	h t s		r e s	e r	ved					

Table 4.2.9 Leaf blade pubescence of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Auricle color										
	PX di	strict		PO district						
	нм тр						HL			
MKY	colorless	КСН	colorless	PP	colorless	PP	colorless			
DD	colorless	LP	colorless	KN	colorless	РК	colorless			
КСН	colorless	MKY	colorless	PD	colorless	PD	colorless			
MKN	colorless	MHN	colorless	РК	colorless, purple (0.2)	KN	colorless			
NM	colorless	KD	colorless	MP	colorless	LY	colorless			
MH	colorless	DP	colorless	NMA	colorless	NKH	colorless			
КВ	colorless	KB	colorless	LB	colorless	KDD	colorless			
DP	colorless	NM	colorless	КН	colorless	CHLS	colorless			
KKu	colorless	KLO	colorless	КК	colorless	KKu	colorless			
KT	colorless	KLE	colorless	KD	colorless	КК	colorless			
CHD	colorless	PL	colorless	MD	colorless	LB	colorless			
KP	colorless	CHT	colorless	CHD	colorless	СНР	Purple			
MHS	colorless	TDK	colorless	RD16	colorless	KD	colorless			
KM	colorless			NP	colorless	TL	colorless			
KDu	colorless	-		DDa	colorless	NP	colorless			
KD	colorless	-	-	NPH	colorless	ККН	colorless, purple (0.5)			
DKH	colorless	5				DKH	colorless, purple (0.42)			
Number in j	parenthesis was S	hannon-Weav	er Index (H') v	value.	UDI	103	Join			

Table 4.2.10 Auricle color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University All rights reserved

	Collar color											
	PX dis	trict			PO di	strict						
	НМ		ТР		LTH	5	HL					
MKY	Pale green	КСН	Pale green	PP	Pale green	PP	Pale green					
DD	Pale green	LP	Pale green	KN	Pale green	РК	Pale green					
КСН	Pale green	МКҮ	Pale green	PD	Pale green	PD	Pale green					
MKN	Pale green	MHN	Pale green	РК	Pale green, purple (0.2)	KN	Pale green					
NM	Pale green	KD	Pale green	MP	Pale green	LY	Pale green					
МН	Pale green	DP	Pale green	NMA	Pale green	NKH	Pale green					
КВ	Pale green	KB	Pale green	LB	Pale green	KDD	Pale green					
DP	Pale green	NM	Pale green	КН	Pale green	CHLS	Pale green					
KKu	Pale green	KLO	Pale green	КК	Pale green	KKu 🔿	Pale green					
KT	Pale green	KLE	Pale green	KD	Pale green	КК	Pale green					
CHD	Pale green	PL PL	Pale green	MD	Pale green	LB	Pale green					
KP	Pale green	CHT	Pale green	CHD	Pale green	CHP	Pale green					
MHS	Pale green	TDK	Pale green	RD16	Pale green	KD	Pale green					
KM	Pale green	-		NP	Pale green	TL	Pale green					
KDu	Pale green	-		DDa	Pale green	NP	Pale green					
KD	Pale green	-		NPH	Pale green	KKH	Pale green, purple (0.56)					
DKH	Pale green	5			~~~	DKH	Pale green, purple (0.2)					
Number in p	parenthesis was S	hannon-Weav	ver Index (H') v	alue.			omu					

Table 4.2.11 Collar color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University AII rights reserved

	Ligure color										
	PX d	istrict			PC	district					
	НМ	1	TP I	LTE		21	HL				
MKY	colorless	КСН	colorless	PP	colorless	PP	colorless				
DD	colorless	LP	colorless	KN	colorless	РК	colorless				
КСН	colorless	МКҮ	colorless	PD	colorless	PD	colorless				
MKN	colorless	MHN	colorless	РК	colorless	KN	colorless				
NM	colorless	KD	colorless	MP	colorless	LY	colorless				
МН	colorless	DP	colorless	NMA	colorless	NKH	colorless				
КВ	colorless	KB	colorless	LB	colorless	KDD	colorless				
DP	colorless	NM	colorless	КН	colorless	CHLS	colorless				
KKu	colorless	KLO	colorless	КК	colorless	KKu	colorless				
KT	colorless	KLE	colorless	KD	colorless	KK	colorless				
CHD	colorless	PL	colorless	MD	colorless	LB	colorless				
KP	colorless	СНТ	colorless	CHD	colorless	СНР	colorless				
MHS	colorless	TDK	colorless	RD16	colorless	KD	colorless				
KM	colorless		$\mathbf{I} \mathbf{I} \cdot \mathbf{T} \mathbf{T}$	NP	colorless	TL	colorless				
KDu	colorless	-	_	DDa	colorless	NP	colorless				
KD	colorless	-	-	NPH	colorless	KKH	colorless, purple (0.69)				
DKH	colorless					DKH	colorless				
Number in p	parenthesis was Shar	nnon-Weaver Ind	ex (<i>H</i> ') value.	2.19		OBC	INU				

Table 4.2.12 Ligule color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University AII rights reserved

		0	L	igure shape						
	PX dis	strict			PO	district				
	НМ	Т	P		H		HL			
MKY	2-cleft	КСН	2-cleft	PP	2-cleft	PP	2-cleft			
DD	2-cleft	LP	2-cleft	KN	2-cleft	РК	2-cleft			
КСН	2-cleft	МКҮ	2-cleft	PD	2-cleft	PD	2-cleft			
MKN	2-cleft	MHN	2-cleft	РК	2-cleft	KN	2-cleft			
NM	2-cleft	KD	2-cleft	МР	2-cleft	LY	2-cleft			
МН	2-cleft	DP	2-cleft	NMA	2-cleft	NKH	2-cleft			
KB	2-cleft	KB	2-cleft	LB	2-cleft	KDD	2-cleft			
DP	2-cleft	NM	2-cleft	КН	2-cleft	CHLS	2-cleft			
KKu	2-cleft	KLO	2-cleft	КК	2-cleft	KKu	2-cleft			
KT	2-cleft	KLE	2-cleft	KD	2-cleft	КК	2-cleft			
CHD	2-cleft	PL	2-cleft	MD	2-cleft	LB	2-cleft			
KP	2-cleft	CHT	2-cleft	CHD	2-cleft	СНР	2-cleft			
MHS	2-cleft	TDK	2-cleft	RD16	2-cleft	KD	2-cleft			
KM	2-cleft			NP	2-cleft	TL	2-cleft			
KDu	2-cleft	-	-	DDa	2-cleft	NP	2-cleft, acute (0.69)			
KD	2-cleft	-	-	NPH	2-cleft	ККН	2-cleft			
DKH	2-cleft				5	DKH	2-cleft			
Number in	parenthesis was Shar	nnon-Weaver I	ndex (H') value.	19.19		080	INU			
Сор	Copyright [©] by Chiang Mai University									
AĪ	l r	ig	h t	s r	es	erv	e d			

Table 4.2.13 Ligule shape of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX)district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

	Stigma color											
	PX dis	trict			PO d	istrict						
	НМ	Т		LT	H	Н						
МКҮ	colorless	КСН	colorless	PP	colorless	PP	colorless					
DD	colorless	LP	colorless	KN	colorless	РК	colorless					
КСН	colorless	МКҮ	colorless	PD	colorless	PD	colorless					
MKN	colorless	MHN	colorless	РК	Purple	KN	colorless					
NM	colorless	KD	colorless	MP	colorless	LY	colorless					
МН	colorless	DP	colorless	NMA	colorless	NKH	colorless					
КВ	colorless	KB	colorless	LB	colorless	KDD	colorless					
DP	colorless	NM	colorless	КН	colorless	CHLS	colorless					
KKu	colorless	KLO	colorless	КК	colorless	KKu	colorless					
КТ	colorless	KLE	colorless	KD	colorless	КК	colorless					
CHD	colorless	PL	colorless	MD	colorless	LB	Purple					
KP	colorless	СНТ	colorless	CHD	colorless	CHP	colorless					
MHS	colorless	TDK	colorless	RD16	colorless	KD	colorless					
KM	colorless		J-TT	NP	colorless	TL	colorless					
KDu	colorless	-		DDa	colorless	NP	colorless					
KD	colorless	-	-	NPH	colorless	ККН	Purple					
DKH	colorless		5			DKH	Purple					
Number in pa	renthesis was Shann	on-Weaver Inde	x (H ') value.	010	210	100	nIJ					

Table 4.2.14 Stigma color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University AII rights reserved

	Apicullus color											
	PX distr	rict			PO di	strict						
	HM	<	TP		LTH		HL					
MKY	Straw	KCH	Brown, purple (0.16)	PP	Straw	PP PP	Straw					
DD	Purple	LP	Straw, brown (0.23)	KN	Purple	РК	Straw					
КСН	Purple	МКҮ	Straw, brown (0.47)	PD	Straw	PD	Straw					
MKN	Brown, straw (0.65)	MHN	Straw, brown (0.19)	РК	Straw	KN	Purple					
NM	Straw, brown, purple, red (1.01)	KD	Purple	MP	Brown	SLY Z	Purple					
MH	Straw, brown, red (0.88)	DP	Red, brown, purple (0.72)	NMA	Brown	NKH	Straw, brown (0.1)					
KB	Straw, brown, purple (0.2)	KB	Straw, brown (0.38)	LB	Straw, brown (0.41)	KDD	Straw, brown (0.33)					
DP	Brown, purple, red (1.06)	NM	Straw, brown (0.21)	КН	Straw	CHLS	Straw, brown (0.55)					
KKu	Straw	KLO	Purple	КК	Brown	ККи	Straw					
KT	Straw, brown (0.32)	KLE	Straw, brown (0.25)	KD	Brown	КК	Brown					
CHD	Straw, brown (0.08)	PL	Brown, purple (0.54)	MD	straw	LB	Brown					
KP	Straw, brown (0.2)	CHT	Straw	CHD	Straw, brown (0.06)	СНР	Straw, brown (0.51)					
MHS	Brown	TDK	Straw	RD16	Straw	KD	Brown					
KM	Purple		7	T NP	Straw	TL	Straw					
KDu	Straw, purple (0.04)	-	UNI	DDa	Straw	NP	Straw					
KD	Brown, purple (0.06)	-		NPH	Straw	ККН	Purple					
DKH	Purple	-		-	-	DKH	Purple					
Number in	Number in parenthesis was Shannon-Weaver Index (H') value.											

Table 4.2.15 Apicullus color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University All rights reserved

	PX dist	rict			PO distr	ict	
	НМ		TP		LTH		HL
MKY	White	КСН	White, red (0.57)	PP	White, red (0.2)	PP	White
DD	White, red (0.2)	LP	White, brown (0.2)	KN	White, red (0.52)	РК	Red
КСН	White, red (0.2)	МКҮ	White, red (0.29)	PD	White, red (0.52)	PD	Red
MKN	White	MHN	White, red (0.41)	РК	Red	KN	White
NM	White	KD	White	МР	White	LY	Red
MH	White	DP	White	NMA	White	NKH	White
KB	White, brown (0.3)	KB	White, red (0.33)	LB	White	KDD	White, red (0.33)
DP	White, brown (0.8)	NM	White	КН	White, brown, red (0.68)	CHLS	White
KKu	Purple	KLO	White	КК	White	KKu	Purple
KT	White	KLE	White	-KD	White	KK	White
CHD	White	PL	White, red (0.43)	MD	White	LB	White, red (0.51)
KP	White, brown (0.2)	СНТ	White	CHD	White, brown, red (0.99)	СНР	White, red (0.34)
MHS	White	TDK	White	RD16	White	KD	White
KM	Red		$AJ \cdot TT$	NP	White	TL	White
KDu	White	-		DDa	White	NP	White
KD	White	-		NPH	White, red (0.21)	ККН	White, red (0.33)
DKH	White	-		-	<i>.</i>	DKH	White

Table 4.2.16 Pericarp color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University AII rights reserved

	ab		Husk color				
	PX distric	t			PO distr	ict	
	HM		TP	>	LTH		HL
МКҮ	straw	КСН	Purple line with straw, straw (0.06)	PP	straw	PP	Straw
DD	Straw, purple line with straw, brown line with straw (0.87)	LP	Straw	KN	Straw, purple line with straw (0.68)	РК	Straw
KCH	Straw, purple line with straw (0.6)	MKY	Straw	PD	Brown	PD	Straw
MKN	straw	MHN	Straw	РК	Brown	KN	Straw, purple li with straw (0.6
NM	Straw, brown line with straw, reddish brown (1.47)	KD	Reddish brown	MP	Brown line with straw, straw with brown spots (0.06)	LY	Straw, purple lin with straw (0.5
МН	Straw, brown line with straw, straw with brown spots (1.31)	DP	Reddish brown, reddish brown with straw spots (0.68)	NMA	Brown line with straw	NKH	Straw, brown lin with straw (0.43
KB	straw	KB	Straw, reddish brown with straw spots (0.18)	LB	Straw, straw with brown spots (0.32)	KDD	Straw
DP	Brown line with straw, purple line with straw, straw with reddish spots (1 18)	NM	Straw, straw with brown spots (0.06)	КН	Straw, brown line with straw (0.32)	CHLS	Straw, brown li with straw (0.0
KKu	Straw, purple line with straw (0.31)	KLO	Straw, brown line with straw, purple line with straw (0.41)	КК	Brown line with straw	KKu	Straw, purple li with straw (0.1
КТ	Straw, brown line with straw (0.06)	KLE	Straw, brown line with straw (0.03)	KD	Brown line with straw, reddish brown (0.71)	КК	Brown line wit
CHD	straw 101	PL	Straw, brown line with straw, purple line with straw (0.67)	MD	straw		Straw

Table 4.2.17 Husk color of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX)district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Number in parenthesis was Shannon-Weaver Index (H') value. Tang Mai University All rights reserved

Table 4.2.17 (Continued)

	Husk color										
	PX district		9		PO di	strict					
	НМ		ТР	D a	LTH		HL				
KP	straw	CHT	straw	CHD	Straw	CHP	Straw				
MHS	Straw, brown line with straw, purple line with straw (0.37)	TDK	straw	RD16	Straw	KD	Brown line with straw				
KM	Purple line with straw, straw (0.09)	-	- 0	NP	Straw	TL	Straw				
KDu	Purple line with straw, straw (0.15)	- 2	111111	DDa	Straw	NP	Straw				
KD	Brown line with straw, straw line with brown (0.66)		-	NPH	Straw, brown line with straw (0.39)	ККН	Straw				
DKH	Straw			83-	-	DKH	Straw				

Number in parenthesis was Shannon-Weaver Index (H') value.

A MAI

56

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

				brain awning					
	PX di	istrict		PO district					
	HM		ТР		LTH	Jan V	HL		
МКҮ	Absent	КСН	Absent	РР	Absent, short and partly awned (0.22)	PP	Absent, short and partly awned (0.09)		
DD	Absent	LP	Absent	KN	Absent, short and partly awned (0.06)	РК	Absent, short and partly awned (0.24)		
КСН	Absent	МКҮ	Absent	PD	Absent	PD	Absent, short and partly awned (0.18)		
MKN	Absent	MHN	Absent	РК	Absent, short and partly awned (0.07)	KN	Absent		
NM	Absent	KD	Absent	MP	Absent	LY	Absent, short and partly awned (0.11)		
MH	Absent	DP	Absent	NMA	Absent	NKH	Absent		
KB	Absent, short and partly awned (0.3)	KB	Absent, short and partly awned (0.08)	LB	Absent	KDD	Absent		
DP	Absent	NM	Absent	КН	Absent	CHLS	Absent		
KKu	Absent	KLO	Absent	КК	Absent	KKu	Absent		
KT	Absent	KLE	Absent	KD	Absent	КК	Absent		
CHD	Absent, short and partly awned (0.4)	PL	Absent	MD	Absent, short and partly awned (0.14)	LB	Absent, short and partly awned (0.29)		
KP	Absent, short and partly awned (0.5)	СНТ	Absent, short and partly awned (0.23)	CHD	Absent, short and partly awned (0.6)	CHP	Absent, short and partly awned (0.12)		
MHS	Absent	TDK	Absent, short and partly awned (0.06)	RD16	Absent, short and partly awned (0.1)	KD	Absent		
KM	Absent			NP	Absent, short and partly awned (0.23)	TL	Absent		
KDu	Absent D		F D I	DDa	Absent, short and partly awned (0.1)	NP	Absent		
CKD	Absent	\mathbb{C}	by Ch	a NPH g	Absent	ККН	Absent, short and partly awned (0.28)		
DKH	Absent		· · · ·	-	-	DKH	Absent		
Number ir	narenthesis was Shar	nnon-Weave	r Index (H') value		es				

Table 4.2.18 Grain awning of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Number in parenthesis was Shannon-Weaver Index (*H'*) value.

	Husk pubescence									
	PX	listrict		PO district						
	HM		TP		LTH	\geq 1	HL			
MKY	Glabrous	КСН	Glabrous	PP	pubescence	PP	pubescence			
DD	Glabrous	LP	Glabrous	KN	Glabrous, pubescence (0.21)	PK	pubescence			
КСН	Glabrous	MKY	Glabrous	PD	pubescence	PD	pubescence			
MKN	Glabrous	MHN	Glabrous	РК	pubescence	KN	Glabrous			
NM	Glabrous	KD	Glabrous	MP	Glabrous		Glabrous			
MH	Glabrous	DP	Glabrous	NMA	Glabrous	NKH	Glabrous			
KB	pubescence	KB	Glabrous, pubescence (0.21)	LB	Glabrous	KDD	Glabrous			
DP	Glabrous	NM	Glabrous	КН	Glabrous	CHLS	Glabrous			
KKu	Glabrous	KLO	Glabrous	КК	Glabrous	KKu	Glabrous			
KT	Glabrous	KLE	Glabrous	KD	Glabrous	КК	Glabrous			
CHD	Glabrous	PL	Glabrous	MD	Glabrous	LB	pubescence			
KP	Glabrous, pubescence (0.2)	СНТ	pubescence	CHD	Glabrous	CHP	Glabrous			
MHS	Glabrous	TDK	pubescence	RD16	pubescence	KD	Glabrous			
KM	Glabrous	-	AL TIN	NP	pubescence	TL	Glabrous			
KDu	Glabrous	-		DDa	pubescence	NP	pubescence			
KD	Glabrous	-	-	NPH	pubescence	KKH	pubescence			
DKH	pubescence		08:00		501.5	DKH	pubescence			
Number i	in parenthesis was Shann	on-Weaver	Index (<i>H</i> ') value.	JIC		JUT				

Table 4.2.19 Husk pubescence of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Copyright[©] by Chiang Mai University AII rights reserved

Figure 4.2.4 Variant distance clustering by UPGMA methods showing morphological relationship among samples of local rice varieties

Figure 4.2.5 Morphological characteristics of local rice varieties. Local rice varieties exhibited color of leaf blade, Basal leaf sheath, collar and auricle.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 4.2.6 Morphological characteristics of local rice varieties. Local rice varieties exhibited color of husk, apiculus, awning and pericarp.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Physiological characteristics

Days to flowering

Overall days to flowering of local rice varieties ranged from 68 to 110 days (Table 4.2.20). Mean days to flowering were between 74 to 105 days, but over 80% of all samples observed flowered within 79 to 92 days after planting with CV between 1 to 8% (Figure 4.2.7). Average days to flowering among villages were not different between 87 to 88 days. The earliest samples in this study were PD and LB of HL (74 days) and the latest was KKH of HL (105 days). The highest variation within sample was found in PP of LTH and KB of HM, with CV 7.8 and 7.5%, respectively.

Table 4.2.20 Days to flowering of rice varieties in progeny test in four villages(Planted date 29 June 2007), Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

								1	Days to f	lowering	g				-2	91			
				PX dis	strict				N					PO di	strict				
		НМ	5				TP					LTH					HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)
MKY	87.7	82-94	3.4	3.9	KCH	96.9	94-101	1.7	1.7	PP	86.3	74-95	6.7	7.8	PP	92.8	89-100	2.2	2.3
DD	89.3	82-98	3.8	4.2	LP	91.5	82-100	4.1	4.5	KN	90.5	87-95	2.4	2.6	РК	74.6	71-80	2.8	3.7
KCH	91.6	82-99	4.2	4.6	MKY	81.8	78-91	3.0	3.7	PD	91.8	84-100	3.5	3.8	PD	73.6	70-79	2.2	3.1
MKN	81.2	71-94	4.5	5.6	MHN	87.7	80-96	4.1	4.7	РК	85.3	78-91	2.6	3.0	KN	87.7	80-95	3.1	3.6
NM	91.7	83-101	5.3	5.8	KD	86.1	81-94	3.5	4.1	MP	83.8	78-91	3.9	4.7	LY	79.7	75-92	4.1	5.1
MH	84.2	78-92	3.9	4.6	DP	86.8	77-92	3.9	4.5	NMA	92.1	87-96	2.3	2.5	NKH	86.2	79-92	3.7	4.3
KB	84.8	78-100	6.4	7.5	KB	84.0	77-92	3.4	4.1	LB	88.0	82-94	3.9	4.5	KDD	83.9	76-98	5.0	5.9
DP	82.3	77-94	4.7	5.7	NM	82.3	77-100	5.2	6.3	КН	88.2	78-97	4.5	5.1	CHLS	93.3	91-96	1.4	1.5
KKu	93.1	88-98	2.5	2.7	KLO	96.3	92-100	2.0	2.1	КК	87.6	83-95	3.0	3.4	KKu	80.8	77-92	3.4	4.2
KT	93.2	86-104	4.2	4.5	KLE	82.8	78-89	3.0	3.7	KD	88.5	83-104	4.6	5.2	КК	87.7	82-93	3.4	3.9
CHD	81.9	77-94	4.1	5.0	PL	95.6	91-100	2.0	2.1	MD	84.8	79-93	4.0	4.7	LB	73.7	68-84	3.5	4.7
KP	96.3	87-102	2.8	2.9	CHT	79.9	73-85	2.9	3.6	CHD	83.7	73-93	5.0	6.0	CHP	92.6	89-98	2.4	2.6
MHS	87.2	80-95	4.1	4.7	TDK	79.0	75-83	2.1	2.6	RD16	85.0	75-89	2.7	3.2	KD	94.9	90-98	1.9	2.0
KM	80.4	76-88	3.2	4.0	-	-	-	-	-	NP	83.4	78-90	2.7	3.3	TL	85.9	80-101	4.3	5.0
KDu	98.1	77-104	4.7	4.8] - [] '	1-5				DDa	91.3	86-96	2.7	3.0	NP	84.2	80-89	2.4	2.9
KD	89.4	80-97	3.5	3.9	-			-	-	NPH	88.5	82-97	4.6	5.2	ККН	105	95-109	3.6	3.4
DKH	86.6	83-97	2.8	3.2	\bigcirc	I	h	-	Th	ia	nc	- ^			DKH	104	102-110	1.6	1.6
Mean	88.2	<u>Z - </u>	0			87.0	~				87.4					87.1			
Range	80.4-9	8.1				79-96.	9	1		5	83.4-9	2.1	9	S	e	73.6-1	05	e	3
$\overline{\mathbf{M}} = \mathbf{me}$	an, R	= rang	e, SD	= star	dard de	viatio	n, CV :	= Co	efficier	nt of Va	riatio	n							

Figure 4.2.7 Distribution of days to flowering of rice varieties in progeny test in four villages (Planted date 29 June 2007), Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Number of tillers per plant

Number of tillers per plant were between 1 to 15 (Table 4.2.21). For each sample, mean tillers per plant ranged from 3.6 to 9, but majority samples distributed within 4 to 6 tillers per plant (Figure 4.2.8). Mean number of tillers per plant among villages were the same (5 tillers). Coefficient of variation ranged from 15 to 46.5 %, with the highest found in KDu in HM.

Copyright[©] by Chiang Mai University All rights reserved

						6		Nu	mber o	f tillers per	plant				5				
				PX	district				7			7		PC) district				
		HM		9			TP			T Kith	E	LTH	>			20	HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)
MKY	5.1	3-7	1.6	30.4	КСН	4.0	3-5	0.8	19.9	PP	5.6	3-8	1.4	24.9	PP	4.4	2-6	1.2	27.0
DD	5.7	3-10	1.6	28.3	LP	4.2	3-7	1.2	28.5	KN	9.1	6-13	2.0	22.5	РК	4.2	2-6	0.9	22.5
KCH	4.1	1-6	1.3	32.5	MKY	4.3	3-6	1.0	24.0	PD	5.4	4-11	1.8	33.9	PD	5.0	3-9	1.8	36.2
MKN	3.9	1-6	1.2	31.0	MHN	3.8	2-5	0.8	21.9	РК	4.2	3-7	1.2	28.5	KN	4.7	3-8	1.6	33.7
NM	4.1	3-5	0.8	19.2	KD	5.1	4-6	0.8	15.0	MP	4.2	1-7	1.8	42.6	LY	3.7	1-6	1.1	29.8
MH	4.1	3-6	1.0	24.9	DP	4.2	2-8	1.6	38.3	NMA	5.0	2-9	1.7	33.7	NKH	4.0	2-5	1.0	25.6
KB	4.7	3-7	1.3	29.0	KB	4.4	2-8	1.9	43.2	LB	5.2	2-8	1.8	33.9	KDD	4.0	3-7	1.2	29.2
DP	4.3	1-7	1.4	33.0	NM	4.0	2-6	1.0	25.3	КН	5.0	2-8	1.4	28.3	CHLS	5.0	2-9	1.7	35.0
KKu	3.9	2-6	1.0	24.8	KLO	4.7	2-7	1.4	29.8	КК –	5.2	1-8	1.7	31.7	KKu	5.1	3-8	1.6	30.4
KT	4.5	2-7	1.4	31.0	KLE	3.6	1-7	1.4	38.2	KD	4.0	2-7	1.2	29.2	КК	5.1	3-13	2.4	46.3
CHD	4.7	1-7	1.4	29.4	PL	3.8	2-8	1.4	36.8	MD	5.5	3-9	1.4	25.6	LB	5.6	3-8	1.4	24.4
KP	7.5	2-13	2.8	37.8	СНТ	6.8	4-15	2.5	37.1	CHD	4.8	2-10	1.9	39.7	СНР	4.7	2-7	1.5	31.7
MHS	4.4	2-6	1.1	25.0	TDK	6.5	3-9	1.7	26.2	RD16	5.8	3-9	1.7	30.3	KD	4.8	1-8	2.0	42.0
KM	4.4	2-8	1.5	33.6	-	-	-	-	-	NP	5.2	2-8	1.2	23.8	TL	4.2	2-7	1.2	29.5
KDu	3.8	1-7	1.8	46.5	-	-	-	-	-	DDa	5.3	2-10	2.4	44.6	NP	5.1	1-7	1.5	29.8
KD	4.2	3-6	1.0	22.7			-		2	NPH	4.7	1-8	1.9	41.5	ККН	6.4	1-10	2.8	44.5
DKH	6.9	3-13	3.0	44.2		J-r	1).	5-11					DKH	5.4	4-8	1.4	25.1
Mean	4.7		•		- 6	4.6	1.1				5.3				•	4.8	•		•
Range	3.8-7.	5		gr		3.6-6.8	3 0	Y		.nia	4 -9.1	B	\mathbf{h}	Λa		3.7-6.4	4	er	SITY
M = 1	nean,	$\mathbf{R} = \mathbf{r}$	ange,	SD =	standard	devia	tion, (CV =	Coeff	icient of V	/aria	tion	e		5 e		- 1		e d

Table 4.2.21 Number of tillers per plant of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) ofPhonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.8 Distribution of number to tillering of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Culm length (cm)

Culm length at harvest of plants within local rice varieties ranged from 67 to 162 cm (Table 4.2.22). Average culm length for individual sample between 89.1 to 144.5 cm, but most were 100 to 130 cm. The highest culm length recorded at DKH in HL and the lowest was KT in HM. Mean of culm length among PX and PO districts was similarly (111.2 to 114.6 cm). High variation within samples were found with CV varied from 4.2 to 15.6 % (Figure 4.2.9), with the highest was PP sample in HL, PX district.

-					0			(Culm len	gth (cm)		Z							
				PX	district					7 >	7		0	PO di	strict				
		HM	<	9			TP		Kits			LTH					HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)
MKY	111.2	100-126	7.3	6.6	КСН	138.6	117-151	7.5	5.4	PP	130.7	109-152	13.2	10.1	PP	120.9	90-146	18.9	15.6
DD	124.4	104-138	9.5	7.6	LP	118.0	73-133	13.8	11.7	KN	112.4	98-124	7.3	6.5	РК	114.4	100-130	9.6	8.4
KCH	117.8	76-137	16.1	14	MKY	101.2	94-126	7.9	7.8	PD	124.5	107-145	10.8	8.7	PD	110.4	80-129	12.5	11.4
MKN	97.3	68-116	10.7	11	MHN	106.8	92-125	8.0	7.5	РК	115.8	72-129	16.1	13.9	KN	108.2	94-122	8.7	8.0
NM	110.5	95-122	7.1	6.4	KD	114.1	103-127	6.9	6.1	MP	107.4	89-119	6.8	6.4	LY	100.4	67-117	12.2	12.2
MH	111.2	99-126	7.6	6.9	DP	103.7	80-122	10.4	10.1	NMA	114.2	101-131	6.9	6.0	NKH	100.3	86-128	9.8	9.7
KB	108.0	95-123	6.3	5.9	KB	108.1	89-126	10.1	9.3	LB	118.5	98-138	11.0	9.3	KDD	94.9	72-115	10.5	11.1
DP	123.8	104-141	11.2	9.1	NM	103.2	90-114	6.2	6.0	КН	113.9	98-135	9.7	8.5	CHLS	123.4	109-134	8.2	6.7
KKu	132.8	109-158	14.4	11	KLO	119.4	99-152	12.3	10.3	КК	106.7	94-117	6.6	6.2	KKu	92.6	74-111	8.4	9.1
KT	89.1	75-109	8.6	9.6	KLE	123.6	104-139	9.0	7.3	KD	93.6	68-122	10.9	11.7	КК	114.3	95-124	7.0	6.1
CHD	106.4	73-130	12.0	11	PL	129.7	110-154	9.5	7.3	MD	101.3	89-113	5.6	5.6	LB	110.1	90-130	10.9	9.9
KP	127.3	115-141	7.3	5.7	CHT	90.2	75-99	6.0	6.6	CHD	101.0	81-123	10.5	10.4	CHP	121.4	92-140	10.5	8.6
MHS	114.8	102-130	7.3	6.3	TDK	89.3	80-101	5.6	6.3	RD16	99.7	86-129	9.3	9.3	KD	118.4	79-140	13.5	11.4
KM	105.7	84-117	9.4	8.9	-	-	-	-	-	NP	131.0	109-145	9.4	7.1	TL	105.6	91-119	8.0	7.6
KDu	132.3	114-151	10.2	7.7	-	-	-	-	-	DDa	94.6	72-105	7.9	8.4	NP	129.0	118-137	5.5	4.2
KD	111.0	99-121	6.8	6.1	-	-	-5			NPH	133.6	117-149	9.3	6.9	ККН	139.3	118-162	12.1	8.7
DKH	97.6	78-108	6.7	6.9		\mathbf{n})-[51		Ð	DKH	144.5	98-162	14.6	10.1
Mean	113.0		•		$\overline{\mathbf{O}}$	111.2			•		112.4		•		•	114.6	•		
Range	89.1-13	32.8	18	n		89.3-13	8.6			ang	93.6-13	3.6	U	U		92.6-14	4.5	LY.	
M = 1	nean,	$\mathbf{R} = \operatorname{ran}_{\mathbf{z}}$	ge, SD	= sta	andard dev	viation,	$\mathbf{CV} = \mathbf{C}$	oeffic	ient of	Variatio	on	e	S	e	r	\mathbf{V}	e	d	

Table 4.2.22 Culm length (cm) of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay(PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.9 Distribution of culm length (cm) of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Number of panicles per plant

All number of panicle per plant were between 1 to 7 panicles per plant. For each sample, mean of number panicle per plant ranged from 2 to 4 panicles per plant (Table 4.2.23). Mean number of panicles per plant among villages were the same (3 panicles per plant). The highest number of panicles per plant was found in PK of HL, CHT and TDK of TP and DDa of LTH. High variation within samples were found with CV varied from 21.2 to 56.5 % (Figure 4.2.10), with the highest was in KB of TP, PX district.

								Nun	nber of	panicles per	r plant									
				PX	district				7			7		Р	O district					
		HM		9			TP			T Kith	E	LTH	>			20	HL			
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	
MKY	2.9	1-5	1.0	35.2	КСН	2.2	1-3	0.7	34.7	PP	2.8	1-5	1.0	35.9	PP	2.6	1-5	1.0	37.6	
DD	3.0	2-4	0.7	24.8	LP	2.5	1-4	0.9	37.8	KN	2.2	1-3	0.6	28.0	РК	3.7	1-6	1.3	35.0	
KCH	2.2	1-4	0.9	40.7	MKY	2.4	1-3	0.7	28.6	PD	2.7	1-5	0.9	35.2	PD	3.1	1-5	0.9	28.6	
MKN	2.5	2-4	0.7	28.2	MHN	2.1	1-3	0.6	30.3	РК	2.9	2-4	0.7	23.2	KN	2.6	1-6	1.2	- 46.7	
NM	2.3	1-4	0.7	31.8	KD	2.7	2-4	0.6	21.2	MP	2.6	1-4	0.7	26.9	LY	2.5	1-5	1.1	42.2	
MH	2.3	1-3	0.6	24.8	DP	2.8	1-6	1.3	48.5	NMA	2.5	1-3	0.6	24.3	NKH	2.4	1-4	0.9	37.8	
KB	2.3	1-4	0.8	35.0	КВ	2.5	1-6	1.4	56.5	LB	2.5	1-4	0.9	37.8	KDD	2.6	1-5	1.4	53.5	
DP	2.3	1-4	0.8	35.6	NM	2.4	1-5	1.0	43.6	КН	3.0	1-6	1.4	47.3	CHLS	2.7	2-4	0.6	22.3	
KKu	2.4	1-4	0.8	34.6	KLO	2.8	1-5	1.0	37.1	КК —	2.9	2-4	0.8	28.5	KKu	3.0	1-5	1.1	36.9	
KT	2.8	1-6	1.5	53.9	KLE	2.0	1-3	0.6	28.1	KD	2.4	1-4	1.2	48.3	КК	2.6	1-5	1.0	40.2	
CHD	2.5	1-5	1.0	41.2	PL	2.0	1-3	0.7	36.3	MD	2.5	1-4	0.9	35.5	LB	3.0	1-5	1.1	38.8	
KP	3.4	1-6	1.1	33.9	СНТ	3.9	2-6	1.1	_28.7	CHD	2.4	1-4	0.9	39.2	CHP	2.3	1-4	0.9	38.5	
MHS	2.5	1-4	0.8	30.4	TDK	3.6	1-5	1.2	33.0	RD16	2.8	1-6	1.5	52.8	KD	2.9	1-4	0.7	26.1	
KM	2.6	1-4	0.7	26.9	-	-	-	-	-	NP	2.9	1-4	0.9	30.2	TL	2.2	1-3	0.8	37.8	
KDu	2.4	1-5	1.0	39.5	-	-	-	-	-	DDa	4.1	2-7	1.4	34.1	NP	3.3	1-4	0.8	24.7	
KD	2.3	1-3	0.7	28.6		- i-			8	NPH	3.2	2-5	0.9	29.6	ККН	2.5	1-3	0.8	30.4	
DKH	3.4	1-6	1.3	37.9			-	-							DKH	2.6	1-4	0.9	34.0	
Mean	2.6		•		L C	2.6		_			2.8				2	2.7	•			_
Range	2.2-3.9			gr		2-3.9	D			. 113	2.2-4.	18		44		2.2-3.	7	e	SIL	У
M = 1	nean,	$\mathbf{R} = \mathbf{r}$	ange,	SD =	standard	devia	tion,	CV =	Coeff	icient of V	Variat	ion	e		s e				e	d

Table 4.2.23 Number of panicles per plant of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) ofPhonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.10 Distribution of number panicle per plant of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Panicle length (cm)

Panicle length of local rice varieties were between 18 to 39 cm (Table 4.2.24). Average panicle length of individual sample distributed from 20.9 to 30 cm, but over 80% all samples showed plant length within 23 to 27 cm. The longest panicle length recorded at CHP from HL and the shortest was NP from HL. Mean of panicle length among villages were similarly (25.2 to 25.5 cm). Coefficient of variation varied from 4.7 to 18.6 % (Figure 4.2.11), with the highest were found in DP of TP and PD of LTH, with CV 18.4 and 18.6%, respectively.

						6		Р	anicle l	ength (cm)			-						
				PX	district					O,D				PO d	istrict				
		HM		9			TP			Kith		LTH			•	2	HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)
MKY	23.6	20-28	2.0	8.4	КСН	24.8	20-31	2.5	10.0	РР	24.6	19-28	2.5	10.3	PP	24.4	20-29	2.4	9.6
DD	26.0	22-33	2.4	9.4	LP	28.8	21-37	3.3	11.4	KN	27.5	20-36	3.4	12.4	РК	25.4	20-29	2.4	9.4
KCH	26.3	21-32	2.7	10.1	MKY	23.8	19-30	2.4	10.2	PD	26.4	24-32	4.9	18.6	PD	25.8	20-31	2.9	11.1
MKN	23.9	19-29	2.3	9.7	MHN	26.3	24-33	2.0	7.8	РК	26.8	20-32	3.1	11.4	KN	29.3	25-35	2.8	9.6
NM	27.9	20-34	3.7	13.2	KD	26.4	22-36	2.9	11.0	MP	22.6	19-28	2.1	9.4	LY	25.1	18-31	3.4	13.4
MH	25.0	20-30	1.9	7.5	DP	24.3	24-29	4.5	18.4	NMA	28.8	21-34	3.5	12.3	NKH	23.1	19-28	2.4	10.4
KB	24.9	19-34	3.1	12.3	KB	23.7	19-29	2.3	9.9	LB	28.0	20-39	3.6	13.0	KDD	24.2	20-29	1.9	7.8
DP	27.5	21-33	3.0	11.0	NM	25.6	21-31	2.0	7.7	КН	25.4	20-33	2.7	10.7	CHLS	29.4	21-35	3.1	10.6
KKu	27.0	20-36	3.8	14.2	KLO	24.1	20-29	2.4	9.9	КК	27.6	21-33	2.9	10.4	KKu	23.2	18-30	2.7	11.5
KT	23.4	19-28	2.0	8.5	KLE	28.7	22-35	2.6	9.0	KD	24.6	20-28	1.7	7.0	КК	27.9	21-33	3.8	13.5
CHD	26.6	21-31	2.7	10.1	PL	27.1	21-34	3.3	12.1	MD	22.4	19-26	1.9	8.4	LB	26.7	21-31	2.9	10.7
KP	24.5	20-28	1.8	7.5	CHT	-24.0	19-28	2.0	8.2	CHD	26.8	20-31	2.5	9.3	CHP	30.0	22-35	3.3	11.0
MHS	25.2	20-29	2.1	8.3	TDK	23.0	19-26	_1.8	7.7	RD16	24.8	22-28	1.5	6.0	KD	25.5	19-30	2.3	9.2
KM	24.7	19-29	2.4	9.6	-	-	-	-	-	NP	21.3	19-25	1.4	6.5	TL	26.7	21-32	2.5	9.5
KDu	28.7	21-35	3.7	12.8	-	-	-	-	-	DDa	24.2	20-29	2.1	8.8	NP	20.9	19-23	1.0	4.7
KD	26.2	20-31	2.4	9.2			-	5		NPH	21.8	19-26	1.9	8.8	ККН	22.3	19-26	1.7	7.7
DKH	22.9	20-25	1.1	4.9	5		- - I)-[] - [12		DKH	23.2	18-29	2.6	11.2
Mean	25.5		•		- 6	25.4				•	25.2			•		25.5	•		• -
Range	22.9-2	8.7	ΓĮ	gr	it S	23-28.	80		C	hia	21.3-2	8.8		al	U	20.9-3	30	er	sity
M = 1	nean,	$\mathbf{R} = \mathbf{ra}$	nge, S	SD =	standard	devia	tion, $\overline{\mathbf{C}}$	$V = \overline{C}$	oeffic	ient of \overline{V}	riatio	'n	е	S	e		•		e d

Table 4.2.24 Panicle length (cm) of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay(PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.11 Distribution of panicle length (cm) of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Number of seeds per panicle

Numbers of seeds per panicle of individual local rice varieties were between 12 to 299 seeds per panicle (Table 4.2.25). For each sample, mean number of seed per panicle ranged from 65 to 149 seeds per panicle, but over 85% all samples observed seeds per panicle were 95 to 125 seeds per panicle. The highest number of seeds per panicle was found in DKH from HL, while the lowest was recorded in KKU from HL. Average seed per panicle among villages distributed from 107 to 119 seeds. Coefficient of variation ranged from 17 to 46.8% (Figure 4.2.12), with the highest was found in KH of LTH.

					ax			Numbe	er of se	eds per pan	icle			-					
				PX	district			0	0	17/	7			PO c	istrict				
		HM					TP		X	N/E		LTH				16	HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	M	R	SD	CV (%)
MKY	102	37-153	22.7	22.2	КСН	111	60-169	28.2	25.5	PP	111	47-227	42.6	38.5	PP	116	52-211	43.5	37.4
DD	142	80-205	29.5	20.8	LP	107	27-244	45.2	42.3	KN	138	27-207	46.8	33.8	РК	89	28-164	25.4	28.3
KCH	147	44-232	44.0	29.9	MKY	120	41-187	33.4	27.8	PD	136	43-299	57.4	42.0	PD	84	44-129	23.8	28.1
MKN	128	53-205	33.8	26.3	MHN	119	36-169	30.4	25.5	PK	116	21-199	41.3	35.7	KN 🚽	142	31-286	48.6	34.1
NM	106	45-157	26.7	25.2	KD	101	55-175	27.1	26.8	MP	115	59-216	31.8	27.7	LY	87	22-151	30.3	34.9
MH	93	56-153	22.4	24.1	DP	90	25-151	28.1	31.3	NMA	111	44-169	29.6	26.7	NKH	120	48-199	39.9	33.2
KB	119	61-224	38.2	32.1	KB	116	54-209	39.0	33.7	LB	109	37-204	34.3	31.5	KDD	127	12-191	42.4	33.5
DP	116	40-178	33.2	28.6	NM	83	25-139	23.2	27.9	КН	97	41-224	45.4	46.7	CHLS	128	63-177	28.6	22.3
KKu	109	40-290	47.7	43.8	KLO	96	22-151	29.4	30.6	KK	106	48-187	32.7	30.9	KKu	65	18-108	21.1	32.6
KT	102	38-139	28.5	28.0	KLE	108	59-180	28.8	26.8	KD	95	25-167	33.5	35.4	КК	100	35-150	30.8	30.9
CHD	104	31-211	34.8	33.5	PL	119	65-192	33.8	28.3	MD	101	40-188	31.1	30.9	LB	102	34-164	36.1	35.4
KP	121	68-196	30.7	25.3	CHT	110	61-158	20.5	18.7	CHD	116	13-215	49.2	42.3	CHP	144	65-250	47.1	32.7
MHS	125	42-224	40.9	32.7	TDK	104	55-145	145	24.7	RD16	135	84-201	23.0	17.0	KD	108	44-170	32.5	30.2
KM	100	48-143	25.0	25.1	-	-		-	-	NP	113	43-181	33.2	29.3	TL	106	56-153	27.4	25.8
KDu	136	45-217	47.1	34.6	-	-	-	-	-	DDa	128	62-181	31.5	24.6	NP	121	63-173	22.7	18.7
KD	139	61-232	33.1	23.8	-		-	8		NPH	126	60-188	29.0	23.0	ККН	100	56-177	28.7	28.8
DKH	126	15-179	29.3	23.3					-			7-2			DKH	149	29-154	53.7	36.1
Mean	118.5		•		$\overline{\mathbf{O}}$	106.5			-	•	115.8		•			111.1		•	
Range	93-147	yr	Ig	n		83-120	DY			lan	95-138		21		Jn	65-149	ers	JIT	
M = 1	mean,	R = rang	ge, SD	= sta	andard de	viatior	$\mathbf{r}, \mathbf{CV} =$	Coeff	icient	of Variat	tion	e	S	e	er		/ 6	3	d

Table 4.2.25 Number of seeds per panicle of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) ofPhonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.12 Distribution of number of seed per panicle of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Filled seeds (%)

Overall percent of filled seeds of individual local rice varieties ranged from 14 to 100 % (Table 4.2.26). Mean percent of filled seeds were between 67.4 to 92.7 %, but over 80% all samples showed filled seeds within 75 to 85 %. Average percent of filled seeds among villages were not much different between 78.1 to 83.9%. Coefficient of variation of percent of filled seeds varied from 5.3 to 22.3 %, with the highest found in KDD of HL (Figure 4.2.13).

								Р	ercen	t of filled se	eeds				5				
				PX c	listrict			Z		Q,D				P	O district				
		HM		9			TP			155		LTH					HL		
Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)	Variety name	М	R	SD	CV (%)
MKY	84.3	72-99	6.6	7.8	КСН	90.5	77-97	5	5.4	РР	84.0	65-96	7.8	9.2	PP	69.5	37-93	15	21.9
DD	75.9	59-93	9.0	11.9	LP	80.8	66-98	8	10.3	KN	68.5	37-92	11.5	16.8	РК	89.2	73-100	8	8.7
KCH	81.4	59-93	8.0	9.8	MKY	85.0	59-98	11	13.1	PD	77.4	26-96	12.8	16.6	PD	86.5	53-99	11	13.2
MKN	75.1	50-95	12.1	16.1	MHN	80.5	22-97	13	15.9	РК	81.3	14-97	15.0	18.4	KN	81.5	55-97	- 11	13.1
NM	79.9	60-95	8.6	10.7	KD	81.8	56-96	9	11.3	MP	76.3	49-97	15.2	19.9	LY	88.7	65-99	8	8.9
MH	80.0	47-98	13.3	16.7	DP	79.7	51-98	12	14.5	NMA	79.7	65-98	9.1	11.4	NKH	82.5	55-100	11	12.7
KB	76.2	38-98	14.4	18.9	KB	79.1	51-99	11	14.4	LB	78.5	43-97	12.1	15.5	KDD	75.0	39-98	17	22.3
DP	82.4	65-95	7.2	8.7	NM	88.6	56-98	9	10.3	КН	68.9	41-97	12.7	18.5	CHLS	88.0	45-99	10	11.3
KKu	83.3	58-97	10.1	12.1	KLO	80.1	44-95	10	13.0	КК	86.4	67-99	9.0	10.4	KKu	90.7	56-100	9	10.1
KT	81.0	65-95	8.1	10.0	KLE	85.4	53-98	13	15.5	KD	80.1	50-93	9.9	12.4	КК	92.7	82-100	5	5.3
CHD	87.0	59-99	10.8	12.4	PL	83.8	61-95	8	9.4	MD	79.5	63-100	10.2	12.8	LB	86.5	35-99	12	14.1
KP	82.5	55-96	8.5	10.3	CHT	76.1	58-93	9	11.6	CHD	79.5	49-98	14.3	17.9	CHP	81.6	62-97	9	10.5
MHS	79.8	62-99	10.6	13.3	TDK	78.5	55-96	11	13.7	RD16	75.9	61-86	6.3	8.3	KD	86.1	39-99	10	11.5
KM	86.3	44-99	12.6	14.6	-	-	-	-	-	NP	82.7	63-98	8.8	10.7	TL	74.9	54-97	9.5	12.6
KDu	75.6	47-93	10.9	14.4	-	-	-	-	-	DDa	67.4	43-85	11.4	16.9	NP	83.2	45-97	10	11.5
KD	72.6	44-92	11.3	15.5				8	-	NPH	83.0	50-95	8.6	10.4	ККН	89.0	68-98	7	7.6
DKH	84.7	67-96	8.2	9.7		-	-		- (J- L	DKH	80.8	30-99	16	19.5
Mean	80.5		•		-0	82.3				•	78.1			•		83.9			-
Range	72.6-8	7Y	18	<u>sn</u>	T	76.1-9	0.5			nia	67.4-8	6.4		al		69.5-9	2.7	rsi	ITY
M = 1	nean,	$\mathbf{R} = rar$	nge, Sl	D = s	tandard de	eviatio	on, CV	= Co	effici	ient of Va	riatio	n	e	S	e	r	V	e	d

Table 4.2.26 Percent of filled seeds of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) ofPhonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

Figure 4.2.13 Distribution of percent of filled seeds of rice varieties in progeny test in four villages, Ban Houyman (HM) and Ban Thapho (TP) of Phonxay (PX) district and Ban Ladthahae (LTH) and Ban Houyleung (HL) of Pak Ou (PO) district, Luang Prabang province

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

NGMAI

DNA analysis of local rice varieties

Distribution of alleles of six microsatellite loci

The local rice varieties are genetically variable at all six microsatellite loci (Figure 4.2.14). Individual plant within sample of local rice varieties was genetically variable with the level of variation by locus. Some samples were polymorphic for 5 loci whereas others samples contained only one locus (except KD-HL was monomorphic for a single allele at each locus). A total of 19 alleles were detected in six microsatellite loci in 120 individuals from 12 samples of five varieties names in four villages (Table 4.2.27). The number of allele varied by locus with a maximum of four alleles at RM164, RM259 and RM316 to only two alleles at RM5 and RM22. For RM1 three alleles were detected.

Table 4.2.27 Number of alleles of six microsatellite loci, of twelve samples of five

 local rice varieties collected from different villages

		-							
	Varieties	Sources	RM1	RM5	RM22	RM164	RM259	RM316	Total
	MKY	HM	2		2	- 1	2	1	9
	MKY	TP	1	2	2	1	1	2	9
	KCH	HM	2	1	1	1	2	2	9
	KCH	TP	2	1	1	2	2	1	9
	PP	LTH	n l	2	2		2	2	10
	PP	HL	2	2	1	2	2	2	11
	PD	LTH	1	1	2	2	1	2	9
Con	PD	HL	1		1	_ 1	2	1	7
COD	KD	HM	11	1	llall	IZ 1/ V	2	2	8
	KD	TP	2	1	2	\mathbf{U}_2	2	2	11
	KD	LTH	5 2 h	2	1		3	2	12
	KD	HL	5 1	<u>ч</u> 2	1	1	1		6
	Average		3	2	2	4	4	4	19

MKY=Mak khuea yai, KCH =Kao chuk, PP=Phae pee, PD=Phae do, and KD=Kao deng

bp. 500 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 RM316

Figure 4.2.14 Microsatellite amplification product from of twelve samples of five local rice varieties genomic DNA with primer RM316. *M*25bp ladder, Lane 1-3 MKY-HM, Lane 4-6 KHC-HM, Lane 7-9 KD-HM, Lane 10-12 MKY-TP, Lane 13-15 KHC-TP, Lane 16-18 KD-TP, Lane 19-21 PP-LTH, Lane 22-24 PD-LTH, Lane 25-27 KD-LTH, Lane 28-29 PP-HL, Lane 30-31 PD-HL and Lane 32-33 KD-HL.

Microsatellite gene diversity

Genetic diversity was determined for all samples of each locus (Table 4.2.28). Gene diversity ranged from 0.328 at RM259 to 0.137 at RM164. Genetic diversity of KD-HL was fixed (0) for all loci. Average genetic diversity ranged from 0.03 at PD-HL to 0.337 at KD-TP. In addition, a few samples were detected only single or two loci.

Table 4.2.28 Gene diversity per locus for six markers loci, of twelve samples of five

 local rice varieties collected from different villages

	Varieties	Sources	RM1	RM5	RM22	RM164	RM259	RM316	Average
	MKY	HM	0.356	0	0.556	0	0.533	0	0.217
22	MKY	ТР	0	0.356	0.200	0	0	0.533	0.163
ίU	КСН	HM	0.200	0	0	0	0.200	0.467	0.13
	KCH	TP	0.556	0	0	0.533	0.467	0	0.233
Co	PP	LTH	0	0.533	0.533	σ	0.556	0.200	0.273
CU	PP 8	HL	0.478	0.533	0	0.356	0.356	0.467	0.333
	PD	LTH	0	0	0.467	0.200	0	0.200	0.13
ΑΙ	PD	HL	\mathcal{O}_0	0	S 0		0.200	0	0.03
	KD	HM	00	0	0	0	0.489	0.467	0.15
	KD	TP	0.467	0	0.356	0.356	0.533	0.533	0.337
	KD	LTH	0.522	0.356	0	0.200	0.600	0.356	0.307
	KD	HL	0	0	0	0	0	0	0
	Average		0.215	0.148	0.176	0.137	0.328	0.269	

MKY=Mak khuea yai, KCH =Kao chuk, PP=Phae pee, PD=Phae do, and KD=Kao deng

Genetic diversity within sample

All of the samples are genetically diverse. Total number of alleles (A), was highest in KD-LTH containing 12 of the 19 total alleles, while PD-HL contained only 7 alleles. Allelic richness (A_R) measures the number of alleles independent of sample size and allows for comparisons across samples. Average allelic richness for the 12 samples was 2.947 with KD-LTH showed the highest allelic richness 2.00 and with PD-HL showing the lowest allelic richness 1.167 (Table 4.2.29). With Nei's gene diversity (h) ranged from 0.03 in PD-HL to 0.337 in KD-TP, with average gene diversity across all samples of 0.572. Based on all of these measures of diversity, the sample PD-HL in HL, PO district was the least variable of all samples whereas the sample of KD-TP in Ban TP, PX district, had the highest level of diversity. Percentage of polymorphic loci (P) varied from 16.67 in PD-HL to 83.33% in KD-TP, KD-LTH and PP-HL. For fixation index (F_{15}), a measure of heterozygote from Hardy-Weinberg equilibrium, F_{15} ranged 0.722 to 1, indicated that individuals within samples were homozygotes.

The genetic differentiation among samples (F_{ST}) was 0.665. It suggested that approximately 66% of variation were resulted from the differentiation between sample and 34% remaining was differentiated within samples.

Copyright[©] by Chiang Mai University All rights reserved

Varieties	Sources	Ν	А	A _R	h	P (%)	F _{IS}	Hs	H_{T}	\mathbf{F}_{ST}
MKY	HM	10	9	1.500	0.217	50	1			
KCH	HM	10	9	1.500	0.130	50	1			
KD	HM	10	8	1.333	0.150	33.33	0.722			
МКҮ	TPO	10	9	1.500	0.233	50 🔾	1			
КСН	ТР	10	9	1.500	0.163	50	1			
KD	TP	10	11	1.833	0.337	83.33	01			
PP	LTH	10	10	1.667	0.273	66.67	10	0.0		
PD	LTH	10	9	1.500	0.130	50	1			
KD	LTH	10	12	2.000	0.307	83.33	0.902			
PP	HL	10	11	1.833	0.333	83.33	0.772			
PD	HL	10	7	1.167	0.030	16.67	1			
KD	HL	10	6	1.000	0	0.00	1			
Overall samples		120	19	2.947	0.572	100	0.902	0.212	0.607	0.665

Table 4.2.29 Genetic parameter for samples of twelve samples of five local rice

 varieties collected different villages.

A = total number of alleles, A_R = allelic richness, h = gene diversity, percentage of polymorphic loci (P), F_{IS} = fixation index, H_S = average gene diversity within samples, H_T = total gene diversity, F_{ST} = degree of genetic differentiation among samples

Genetic diversity within and among varieties

Between samples with the same names was varied of genetic diversity. In each MKY-HM, MKY-TP, KCH-HM and KCH-TP varieties were similar total number of allele (A), allelic richness (A_R) and percentage of polymorphic loci (Table 4.2.30). Genetic diversity (h) was not much different, but with highest level of genetic differentiation between sample within the same name $F_{ST} = 0.505$ and 0.743, respectively. With PP-HL was higher genetic diversity than PP-LTH together with high level of total number alleles, allelic richness and percentage of polymorphic loci. For PD in LTH and HL have moderately low level of genetic variation, genetic diversity varied 0.03 at PD-HL and 0.13 at PD-LTH, and low genetic differentiation between samples within the same name F_{ST} =0.11. The differentiation of genetic variation within KD variety in four villages, genetic diversity varied from 0.15 at KD-HM to 0.337 at KD-TP (except KD-HL no variation fixed zero), and high level of genetic differentiation between samples within the same name F_{ST} =0.47. Based on all of varieties measures of diversity, the variety of PD showed the lowest variable of all varieties whereas the variety of PP was the highest level of diversity.

 Table 4.2.30 Genetic parameter for varieties of twelve samples of five local rice

 varieties collected different villages.

Varieties	Sources	N	А	A _R	h	P (%)	F _{IS}	Hs	H _T	F _{ST}
MKY-HM	нм	10	9	1.500	0.217	50	1			
MKY-TP	TP	10	9	1.500	0.233	50	1	3		
Overall MKY		2	12	2	0.353	100	1	0.250	0.507	0.507
КСН-НМ	HM	10	9	1.500	0.130	50	1			
KCH-TP	TP	10	9	1.500	0.163	50	1			
Overall KCH		2	14	2.250	0.434	83.33	1	0.163	0.633	0.743
PP-LTH	LTH	10	10	1.667	0.273	66.67	1	N.		
PP-HL	HL	10	11	1.833	0.333	83.33	0.772	7305	5	
Overall PP		2	13	2.158	0.446	100	0.875	0.334	0.588	0.432
PD-LTH	LTH	10	9	1.500	0.130	50	1			
PD-HL	HL	10	7	1.167	0.030	16.67	1	T		
Overall PD		2	10	1.543	0.090	75	1	0.089	0.100	0.111
KD-HM	НМ	10	8	1.333	0.150	33.33	0.722			
KD-TP	ТР	10	11	1.833	0.337	83.33	1			
KD-LTH	LTH	10	12	2.000	0.307	83.33	0.902	Y /		
KD-HL	HL	10	6	1.000	0	0	1			
Overall KD		4	15	2.244	0.358	100	0.906	0.218	0.411	0.470
Overall varieties		12	19	3.072	0.571	100	0.952	0.345	0.643	0.464

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Genetic diversity within and among villages

When varieties were partitioned based on village level. The samples from LTH had the highest number of alleles (17), while the lowest (13) was found in TP and HM (Table 4.2.31). Correspondingly, allelic richness (A_R) was the highest in LTH (2.833), whereas the TP and HL had the lowest value observed (2.167), with an average of 3.122. The highest average gene diversity within village (H_s) was in TP (0.272) and the lowest was HL (0.133) with an average of 0.441.Total gene diversity (H_T) ranged from 0.441 in TP to 0.666 in LTH, with average across all villages of 0.620. Between villages within district, LTH and HL having the same variety names, but different level of genetic differentiation between villages more than HM and TP.

Table 4.2.31 Genetic parameter for villages of twelve samples of five local rice

 varieties collected different villages.

				N h 2		_0				
Villages	Sources	Ν	А	AR	h	P (%)	F _{IS}	Hs	H _T	F _{ST}
Overall HM	HM	3	15	2.500	0.426	100	0.755	0.181	0.557	0.674
Overall TP	ТР 🗸	3	13	2.167	0.375	100	₹Î	0.272	0.441	0.383
Overall LTH	LTH	3	17	2.833	0.523	100	0.958	0.262	0.666	0.606
Overall HL	HL	3	13	2.167	0.383	83.33	0.791	0.133	0.514	0.742
					0.550	100	0.004	o		
Overall villages		12	19	3.122	0.572	100	0.886	0.441	0.62	0.289

A = total number of alleles, A_R = allelic richness, h = gene diversity, percentage of polymorphic loci (P), F_{IS} = fixation index, H_S = average gene diversity within samples, H_T = total gene diversity, F_{ST} = degree of genetic differentiation among samples.

Copyright[©] by Chiang Mai University All rights reserved

Genetic distance

Genetic relationship among samples of local rice varieties by UPGMA clustering diagram derived genetic distance (Nei's 1972) classified two major clusters at genetic distance 0.35. The larger group consisted of samples KD-TP, KD-LTH, MKY-TP, KCH-TP, KD-HL, MKY-HM, KCH-HM and KD-HM, while smaller group consisted of PP-LTH, PP-HL, PD-LTH and PD-HL (Figure 4.2.15). For KD only TP and LTH were closed together but not HL and HM. The same as PD LTH and HL was closed. For MKY, KCH and PP samples were different.

