TABLE OF CONTENTS

	Page
Acknowledgements	iii
	iv
Abstract in English Abstract in Their	vii
Abstract in Thai	
Table of Contents	Х
List of Tables	xiv
List of figures	xvi
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	3
2.1. Green manures	3
2.2. Green manure and rice's soil productivity	3
2.3. Sesbania rostrata as potential green manure species in lowland rice	5
2.4. Nitrogen forms and availability fluctuation within the soil	7
2.5. Nitrogen cycle in paddy soil ecosystem	9
2.6. Dynamics of ammonium nitrogen (NH ₄ ⁺ -N) in the lowland	11
paddy field following incorporation of Sesbania rostrata	
CHAPTER 3: MATERIALS AND METHODS	12
3.1. Farmer field survey	12
3.2. On-farm research	12
3.3. On-station study	13
Part I: Agronomic effect	
3.3.1. Experiment design	13
3.3.2. Cultural practices	14
3.3.3. Data collection	14
Part II: Nitrogen-dynamics	16
3.3.4 Nitrogen-dynamics experiment treatments	16
3.4. Laboratory experiment	17
3.4.1. Nitrogen mineralization experiment	17

CHAPTER 4: STUDY AREA AND FARMER PRODUCTION	18
SYSTEM OF SESBANIA ROSTRATA-RICE	
4.1. Description of study Area	18
4.2.Cropping System	19
4.3. On-farm research in rainy season rice in 1999	20
4.4. Follow-up field survey on farmers' fertilizer management practices	21
following the introduction S. rostrata (2000)	
4.4.1. Fertilizer management by farmers in the study area	21
4.4.2. Chemical fertilizer-based management practice	22
4.4.3. S. rostrata-based management practice	23
4.5. Cost of using of S. rostrata as green manure in lowland rice	23
4.6. Cost and return of lowland rice production system	24
4.7. Return of rainy season rice production system of fertilizer application	26
and incorporating of S. rostrata as green manure	
4.8. Discussion	27
CHAPTER 5: RESULT OF ON STATION EXPERIMENT	32
5.1. Climatic and edaphic conditions	32
5.2. Sesbania rostrata	33
5.3. Effect of nutrient management on plant height and yield characteristics	34
of selected of varieties of glutinous and non-glutinous rice	
5.3.1. Total straw yield	35
5.3.2. Total biomass yield	36
5.3.3. Percent filled grain	36
5.3.4. Harvest index	36
5.3.5. Plant height	37
5.3.6. Panicles per square meter	37
5.3.7. Tillers per square meter	38
5.3.8. The 1000 grain weight	39
5.4. Effect of nutrient management on plant height and yield characteristic	40
of selected quality rice varieties	
5.4.1. Total straw yield	41
5.4.2. Total grain yield	41

5.4.3. Total biomass yield	42
5.4.4. Total filled grainyield	42
5.4.5. Plant height	43
5.4.6. Panicles per square meter	43
5.4.7. Percent productive tillers	43
5.5. Effect of nutrient management on plant height and yield characteristics	44
of modern HYV rice varieties	
5.5.1. Total straw yield	45
5.5.2. Total grain yield	46
5.5.3. Total biomass yield	46
5.5.4. Total filled grain yield	47
5.5.5. Percent filled grain	47
5.5.6. Harvest index	47
5.5.7. Plant height	48
5.5.8. Panicles per square meter	48
5.5.9. Tillers per square meter	49
5.5.10. Percent productive tiller	49
5.5.11. The 1000 grain weight	49
5.5.12. Discussion	51
CHAPTER 6: NITROGEN DYNAMICS EXPERIMENT RESULT	60
6.1. Shoot dry weight of Chinat rice variety	60
6.2. N content and N uptake of Chinat rice variety	61
6.3. Grain yield of Chinat rice variety	63
6.4. Nitrogen dynamics in lowland rice system as affect by nutrient	64
management practices	
6.4.1. Panicle initiation stage	64
6.4.2. Flowering stage	65
6.4.3. 15 days after flowering stage	67
6.4.4. Harvesting stage	67
6.5. Nitrogen mineralization of S. rostrata	71
6.6 Discussion	71

CHAPTER 7: CONCLUSION AND RECOMMENDATION	74
REFERENCES	77
APPENDICES	84
CURRICULUM VITAE	102

LIST OF TABLES

Table	Page
1. Timetables for soils and rice plants samplings	16
2. Four sampling soils and it property	17
3. Average amount of chemical fertilizer application by farmers	22
4. Average yield of rice under each management practice	23
5. Cost of the using of S. rostrata as green manure in lowland rice	24
6. Variable cost of lowland rice production system receiving chemical	25
fertilizer application	
7. Variable cost of lowland rice production system receiving S. rostrata	26
as green manure	
8. Return of rainy season rice production system of fertilizer application	27
and incorporating of S. rostrata as green manure	
9. Pre-rice Sesbania rostrata	34
10. Analysis of variance of yield characteristics of selected varieties	35
of glutinous and non-glutinous rice	
11. Analysis of variance of yield characteristics of selected varieties	35
of glutinous and non-glutinous rice	
12. Plant height and yield characteristics of selected varieties of glutinous	38
and non glutinous rice as affected by nutrient managements	•
13. Plant height and yield characteristics of selected varieties of glutinous	39
and non glutinous rice as affected by varieties	
14. Plant height (cm.) of glutinous and non-glutinous rice as affected by	39
interaction	
between nutrient managements and varieties	
15. Percent productive tiller of glutinous and non-glutinous rice as affected	40
by interaction between nutrient managements and varieties	
16. Analysis of variance of yield characteristics of selected quality rice varieties	s 41
17. Analysis of variance of plant height yield characteristics of selected	41
quality rice varieties	

18.	Plant height and yield characteristic of selected quality rice varieties as	44
	affected by nutrient managements	
19.	Plant height and yield characteristic of selected quality rice as affected	44
	by nutrient managements	
20.	Analysis of variance of yield characteristics of modern HYV rice	45
21.	Analysis of variance of plant height yield characteristics of	45
	modern HYV rice	
22.	Plant height and yield characteristics of modern HYV rice as affected	50
	by nutrient management	
23.	Plant height and yield characteristics of modern HYV rice as affected	50
	by varieties	
24.	Total straw yield (t ha-1) of modern HYV rice as affected by interaction	51
	between nutrient management and varieties	
25.	Total biomass yield (t ha-1) of modern HYV rice as affected by	51
	interaction between nutrient management and varieties	
26.	Harvest index of modern HYV rice as affected by interaction between	51
	nutrient management and varieties	
27.	Total grain (t ha-1) yield of the selected of glutinous rice and non-glutinous	54
	rice varieties as affected by nutrient management and varieties	
28.	Total filled grain gield (t ha-1) of the selected of glutinous rice and	54
	non-glutinous rice varieties as affected by nutrient management and varieties	
29.	Total grain yield (t ha-1) of selected of quality rice varieties as affected	56
	by nutrient management and varieties	
30.	Total filled grain yield (t ha-1) of selected of quality rice varieties as	56
	affected by nutrient management and varieties	
31.	Total grain yield (t ha-1) of modern HYV rice varieties as affected	58
	by nutrient management and varieties	
32.	Total filled grain yield (t ha-1) of modern HYV rice varieties as	58
	affected by nutrient management and varieties	
33.	Analysis of variance of shoot dry weight of Chinat rice variety in different	60
	growth stages and weight of panicle, straw an stubble at harvest	

34. Effect of nutrient management on shoot dry weight of Chinat rice variety	61
in different growth stages (g/m²)	
35. Analysis of variance of % N content of Chinat rice variety in different	62
growth stage	
36. %N of Chinat rice variety in different growth stage	62
37. Analysis of variance of N uptake of Chinat rice variety in different	63
growth stage	
38. Effect of nutrient management on N uptake of Chinat rice variety in	63
different growth stage (gN/m²)	
39. Effect of nutrient management on yield characteristics of Chinat rice variety	64
40. Total inorganic N in each growth stage of Chinat rice variety in different	69
nutrient management system	
41. Apparent and actual N uptake by Chinat rice variety at different stage	69
of growth o	
42. Nitrogen dynamics in lowland rice (Chinat variety), which received different	70
nutrient management system in each growth stage of rice	
43. Percentage of N released from S. rostrata in different soils	71

LIST OF FIGURES

Figure		P	age
1. Schematic representation of nitrogen	n cycle in paddy soil eco	osystem	10
2. Diagram showing procedures for stu	ıdy nitrogen dynamics i	n the field	16
3. Cropping pattern in the study area			20
4. Maximum and minimum temperature	e (°C) Jan-Dec 1999		32
5. Solar radiation (MJ/m²) and rainfall ((mm) during Jan to Dec	1999	33
at the Irrigated Research Station of I	Multiple Cropping Cent	ter	
6. Nitrogen dynamics at panicle initiation	on stage		65
7. Nitrogen dynamics at flowering stage	e ,		66
8. Nitrogen dynamics at 15 days after f	lowering stage		67
9. Nitrogen dynamics at harvest stage			68