តាรបាលូ

		หน้า
กิตติกร	รมประกาศ	ค
บทคัดย่	iอภาษาไทย	3
บทคัดย	iอภาษาอังกฤษ	R
	ญตาราง	ល្អ
สารบาง		រូ
อักษรย่		୴
	ญตารางภาคผนวก	ณ
	บทนำ	1
DIIII X	1.1 วัตถุประสงค์	4
	1.2 ผลที่กาคว่าจะได้รับ	4
	1.3 ขอบเขตและวิธีการวิจัย	4
	1.5 JULI SILING SULL SILING SULL SILING SULL SULL SULL SULL SULL SULL SULL SUL	4
าเทพื่ว	ครวจเอกสารและงานวิจัยที่เกี่ยวข้อง	5
DIGI 2	น้ำมันปลา	16
	ผลของการเสริม โอเมก้า-3 ต่อสมรรถภาพการผลิต	20
•	. ผลของการเสริม โอเมก้า-3 ต่อคุณภาพชาก	22
	ผลของการเสริม โอเมก้า-3 ต่อองค์ประกอบของกรค ใชมัน	22
	ผลของการเสริม โอเมก้า-3 ต่อคุณภาพเนื้อ	24
	การหืนของใขมัน	25
	ก เรทนของ เขมน ผลของการเสริม โอเมก้า-3 ค่อ โคเลสเตอรอลและ ใตรกลีเซอร์ ไรด์	25 27
	v	
	คุณค่าทางโภชนะของเนื้อ	30
	การประเมินคุณภาพทางค้านประสาทสัมผัสของเนื้อสุกร	30

สารบาญ (ต่อ)

บทที่ 3 อุปกรณ์และวิธีการทคลอง	33
3.1 ก่อนระยะทดลองจริง (preliminary period)	36
3.2 การทคลองจริง (experiment period)	41
การศึกษาด้านสมรรถภาพการผลิตของสุกร	42
การศึกษาด้านคุณภาพชากสุกร (carcass quality)	46
การศึกษาด้านคุณภาพเนื้อ (meat quality)	49
บทที่ 4 ผลการทดลอง	70
บทที่ 5 วิจารณ์ผลการทคลอง	90
บทที่ 6 สรุปผลการทคลอง	107
ข้อเสนอแน ะ	110
เอกสารอ้างอิง	113
ภาคผนวก	118
ประวัติผู้เขียน	140

สารบาญตาราง

ตาร	ris Company	เน้า
1	Fatty acid profile	12
2	Fatty acid composition in animal fat, safflower oil, sunflower oil,	
	flaxseed and Linseed	13
3	Fatty acid composition in tuna and sardine oil (% of fat)	17
4	Fatty acid composition as percentage of total fatty acid of various	
	freshwater and marine fish in Pattani province	18
5	The polyunsatuated fatty acid composition in different fish oil	19
6	Indicated meat quality	25
7	Cholesterol in foods	29
8	Fatty acid profiles and ω_6 : ω_3 ratio in swine diets from commercial feed	
	and private farms (mg/100gfeed)	37
9	Composition of preliminary experimental diets in finishing period (60-90 kg)	38
10	Effect of multi-level tuna oil supplymentation on performance of finishing	
	pigs in preliminary period	39
11	Fatty acid profiles of fat thickness in preliminary experimental diet	
	calculated from fatty acid profile of tuna oil (g/ 100kg feed)	40
12	Composition of experiment diets fed to pigs in 2 periods, growing (30-60 kg) and	
	finishing (60-90 kg.).	43
13	Chemical analysis of experimental diets fed to growing (30-60 kg.) and	
	finishing (60–90 kg.) pigs	43
14	Fatty acid profiles and ω_6 : ω_3 ratio in swine diets	
	(growing period and finishing period)	44
15	Meat quality of loin (longissimus dorsi)	49

สารบาญตาราง (ต่อ)

		หนูเ
16	The production performance of different tuna oil level in swine diets	71
17	Production performance of different tuna oil level in swine diets	74
18	Carcass characteristics of different tuna oil supplementation.	77
19	Indirect meat quality of different tuna oil supplementation.	79
20	Meat quality of different tuna oil supplementation.	81
21	The nutritive values of different tuna oil supplementation.	82
22	The effect of different tuna oil level in swine diets on TBA number of meat	83
23	The level of Cholesterol and triglycerides of meat of different tuna oil	
	supplementation	84
24	Sensory evaluation of LD with different tuna oil supplementation.	85
25	The fatty acid composition of the total lipid extractable from meat (LD) with	
	different tuna oil supplementation.	87
26	Fatty acid composition of the total lipid extractable from smoked bacon with	
	different tuna oil supplementation.	88

สารบาญภาพ

ภา	W	หน้า
1	Cholesterol	5
2	A model for plasma triacylglycerol and cholesterol transport in humans	8
3	LDL recepter - mediated endocytosis in mammalian cells	8
4	Structure of some unsaturated fatty acids	10
5	Biosynthesis of ω 9, ω 6 and ω 3 families of polyunsaturated fatty acids	11
6	Fatty acid elongation and desaturation in body	14
7	Metabolic pathway of ω - 3 fatty acid	15
8	Proposed TBA reaction	27
9	Pig pens (individual) in this preliminary and experiment period	41
10	Tuna oil	42
11	Electrical stuning	45
12	Chillng carcass in cold storage room	45
13	That style cutting	46
14	Length measurement	47
15	Backfat thickness measurement	47
16	Loin eye area measurement	48
17	Planimeter	49
18	pH meter and pH measurement at Longissimus dorsi	5
19	Electrical conductivitymeter	52
20	Electrical conductivity measurement at semimembranosus	52
21	Color measurement of loin	53
22	Shear force measurement of loin by Instron (Model 5565)	55
23	Spectrophotometer for measurement of rancidity in meat	59

สารบาญภาพ (ต่อ)

		หน้า
		•
24	Total lipid extractable by separating funnel	63
25	Temperature program	64
26	Gas Chromatography (shimadzu GC 14B)	65
27	Chopping block for panel test	66
28	LD sample for panel test	66
29	Sensory evaluation by panelists	67
30	The average daily gain of pigs with different tuna oil level in swine diets	72
31	The weight gain of pigs with different tuna oil level in swine diets	73
32	The feed conversion ratio of pigs with different tuna oil level in swine diets	75
33	The feed cost per gain of pigs with different tuna oil levels in swine diets	76
34	Effect of multi-level tuna oil supplementation on the TBA number of raw meat	
	stored at 4 °c for up to 10 days.	83
35	The sensory evaluation of meat with different tuna oil supplementation	85
36	Belly and smoked bacon	118
37	Smoked bacon	119

อักษรย่อ

c	°c	=	องศาเชลเซียส
	μl	=	ไมโครลิตร
:	ml	-	มิลลิลิตร
:	mg	5, 2)	มิลลิกรัม
	g	-	กรัม
	kg		กิโลกรัม
	%	=	เปอร์เซ็นต์
	GC	=	gas chromatography
	VLDL	=	very low density lipoprotein
	LDL		low density lipoprotein
	HDL	= , (high density lipoprotein
	PSE	=	pale soft and exudative
	DFD	_	dark firm dry
	SM	- 6	semimembranosus muscle
	LM		logissimus dorsi muscle
	pH ₁	-	pH value at 45 min postmortem
	pH _u	J	pH value at ultimate or 24 hour postmortem
	EC	=	conductivity at 45 min postmortem
	EC _u	=	conductivity at ultimate or 24 hour postmortem
	L*	=	luminosity
	a*	=	red – green index
	b*	=	yellow – blue index
	ALA	=	alpha-linolenic acid
	EPA	=	eicosapentaenoic
	DHA	==	docosahexaenoic
	PUFA	=	polyunsaturated fatty acid

อักษรย่อ (ต่อ)

HUFA = highly unsaturated fatty acid

BHA = butylated hydroxy anisole

BHT = butylated hydroxy toluene

TBA = thiobarbituric acid number

GE = gross energy

SPSS = statistical package for the social science for window

สารบาญตารางภาคผนวก

ตารางภาคผนวก			หน้า
27 ANOVA of initial weight of pigs	s fed different level of tuna oil		120
28 ANOVA of final weight at grov			120
			120
29 ANOVA of final weight at finis			
30 ANOVA of NO. of feeding day			120
31 ANOVA of NO. of feeding day	(60-90) of pigs fed different le	evel of tuna oil	120
32 ANOVA of NO.of feeding day	(30-90) of pigs fed different le	evel of tuna oil	121
33 ANOVA of total feed intake (3	0-60) of pigs fed different leve	el of tuna oil	121
34 ANOVA of total feed intake (6	0-90) of pigs fed different leve	el of tuna oil	121
35 ANOVA of total feed intake (3	0-90) of pigs fed different leve	el of tuna oil	121
36 ANOVA of average daily feed i	ntake (30-60) of pigs fed differ	rent level of tuna oil	121
37 ANOVA of average daily feed i	ntake (60-90) of pigs fed diffe	rent level of tuna oil	122
38 ANOVA of average daily feed i	intake (30-90) of pigs fed diffe	erent level of tuna oil	122
39 ANOVA of weight gain (30-60) of pigs fed different level of	tuna oil	122
40 ANOVA of weight gain (60-90)) of pigs fed different level of	tuna oil	122
41 ANOVA of weight gain (30-90)) of pigs fed different level of	tuna oil	122
42 ANOVA of average daily gain	(30-60) of pigs fed different lev	vel of tuna oil	123
43 ANOVA of average daily gain	(60-90) of pigs fed different lev	vel of tuna oil	123
44 ANOVA of average daily gain	(30-90) of pigs fed different lev	vel of tuna oil	123
45 ANOVA of feed conversion rat	io (30-60) of pigs fed different	level of tuna oil	123
46 ANOVA of feed conversion rat	io (60-90) of pigs fed different	level of tuna oil	123
47 ANOVA of feed conversion rat	io (30-90) of pigs fed different	level of tuna oil	124
48 ANOVA of feed cost per gain ((30-60) of pigs fed different lev	vel of tuna oil	124
49 ANOVA of feed cost per gain ((60-90) of pigs fed different lev	vel of tuna oil	124

สารบาญตารางภาคผนวก (ต่อ)

	หนา
50 ANOVA of feed cost per gain (30-90) of pigs fed different level of tuna oil	124
51 ANOVA of slaughter weight of pigs fed different level of tuna oil	124
52 ANOVA of hot carcass weight of pigs fed different level of tuna oil	125
53 ANOVA of chilled carcass weight of pigs fed different level of tuna oil	125
54 ANOVA of dressing percentage of pigs fed different level of tuna oil	125
55 ANOVA of carcass backfat thickness of pigs fed different level of tuna oil	125
56 ANOVA of backfat thickness (10-11) of pigs fed different level of tuna oil	125
57 ANOVA of carcass lenght of pigs fed different level of tuna oil	126
58 ANOVA of loin eye area of pigs fed different level of tuna oil	126
59 ANOVA of percentage of meat of pigs fed different level of tuna oil	126
60 ANOVA of lean (loin shop) of pigs fed different level of tuna oil	126
61 ANOVA of fat (loin shop) of pigs fed different level of tuna oil	126
62 ANOVA of bone (loin shop) of pigs fed different level of tuna oil	127
63 ANOVA of skin (loin shop) of pigs fed different level of tuna oil	127
64 ANOVA of pH - value (LD; 45 min p.m.) of pigs fed different level of tuna oil	127
65 ANOVA of pH - value (LD; 24 hr. p.m.) of pigs fed different level of tuna oil	127
66 ANOVA of pH - value (SD; 45 min p.m.) of pigs fed different level of tuna oil	127
67 ANOVA of pH - value (SD; 24 hr. p.m.) of pigs fed different level of tuna oil	128
68 ANOVA of EC (LD; 45 min p.m.) of pigs fed different level of tuna oil	128
69 ANOVA of EC (LD; 24 hr.p.m.) of pigs fed different level of tuna oil	128
70 ANOVA of EC (SD; 45 min p.m.) of pigs fed different level of tuna oil	128
71 ANOVA of EC (SD; 24 hr. p.m.) of pigs fed different level of tuna oil	128
72 ANOVA of lightness (L*) from meat at different level of tuna oil	129
73 ANOVA of redness (a*) from meat at different level of tuna oil	129
74 ANOVA of yellowness (b*) from meat at different level of tuna oil	129
75 ANOVA of driploss from meat at different level of tuna oil	129
76 ANOVA of trawing loss from meat at different level of tuna oil	129

สารบาญตารางภาคผนวก (ต่อ)

	หน้า
77 ANOVA of boiling loss from meat at different level of tuna oil	130
78 ANOVA of grilling loss from meat at different level of tuna oil	130
79 ANOVA of shear value (maximum force,N) from meat at different level of tuna oil	130
80 ANOVA of shear value (total energy, J) from meat at different level of tuna oil	130
81 ANOVA of shear value (extention,mm) from meat at different level of tuna oil	130
82 ANOVA of nutritive value (water, %) from meat at different level of tuna oil	131
83 ANOVA of nutritive value (fat, %) from meat at different level of tuna oil	131
84 ANOVA of nutritive value (protein, %) from meat at different level of tuna oil	131
85 ANOVA of TBA value (0 day) from meat at different level of tuna oil	131
86 ANOVA of TBA value (5 day) from meat at different level of tuna oil	131
87 ANOVA of TBA value (10 day) from meat at different level of tuna oil	132
88 ANOVA of triglyceride from meat at different level of tuna oil	132
89 ANOVA of cholesterol from meat at different level of tuna oil	132
90 ANOVA of tenderness from meat at different level of tuna oil	132
91 ANOVA of taste from meat tat different level of tuna oil	132
92 ANOVA of juiciness from meat at different level of tuna oil	133
93 ANOVA of acceptability from meat at different level of tuna oil	133
94 ANOVA of palmitic acid from meat at different level of tuna oil	133
95 ANOVA of stearic acid from meat at different level of tuna oil	133
96 ANOVA of oleic acid from meat at different level of tuna oil	133
97 ANOVA of linoleic acid from meat at different level of tuna oil	134
98 ANOVA of linolenic acid from meat at different level of tuna oil	134
99 ANOVA of arachidic acid from meat at different level of tuna oil	134
100 ANOVA of arachodonic acid from meat at different level of tuna oil	134
101 ANOVA of ecosapentaenoic acid from meat in pigs at different level of tuna oil	134
102 ANOVA of docosahexaenoic acid from meat at different level of tuna oil	135
103 ANOVA of saturated fatty acid from meat at different level of tuna oil	135

สารบาญตารางภาคผนวก (ต่อ)

		หนา
104	ANOVA of polyunsaturated fatty acid from meat at different level of tuna oil	135
	ANOVA of polyunsaturated: saturated from meat at different level of tuna oil	135
	ANOVA of total omega - 6 fatty acid from meat at different level of tuna oil	135
	ANOVA of total omega - 3 fatty acid from meat at different level of tuna oil	136
	ANOVA of total omega - 6: omega - 3 ratio from meat at different level of	
100	tuna oil	136
109	ANOVA of palmitic acid from smoked bacon at different level of tuna oil	136
	ANOVA of stearic acid from smoked bacon at different level of tuna oil	136
	ANOVA of oleic acid from smoked bacon at different level of tuna oil	136
	ANOVA of linoleic acid from smoked bacon at different level of tuna oil	137
	ANOVA of linolenic acid from smoked bacon at different level of tuna oil	137
	ANOVA of arachidic acid from smoked bacon at different level of tuna oil	137
	ANOVA of arachodonic acid from smoked bacon at different level of tuna oil	137
	ANOVA of ecosapentaenoic acid from smoked bacon in pigs at different level	
**0	of tuna oil	138
117	ANOVA of docosahexaenoic acid from smoked bacon at different level of tuna oil	138
	ANOVA of saturated fatty acid from smoked bacon at different level of tuna oil	138
	ANOVA of polyunsaturated fatty acid from smoked bacon at different level of	
117	tuna oil	138
120	ANOVA of polyunsaturated: saturated fatty acid from smoked bacon at different	150
120	level of tuna oil	139
121	ANOVA of total omega - 6 fatty acid from smoked bacon at different level of	137
121	\mathcal{E}	139
100	tuna oil	139
122	ANOVA of total omega - 3 fatty acid from smoked bacon at different level of	120
122	tuna oil ANONA of total orange - 6 tomage - 2 ratio from ampled bases at different level	139
125	ANOVA of total omega - 6: omega - 3 ratio from smoked bacon at different level	120
	of tuna oil	139