บทที่ 3 ระเบียบวิจัย

3.1 ข้อมูลที่ใช้ในการศึกษา

ข้อมูลที่ใช้ในการศึกษาครั้งนี้เป็นข้อมูลทุติยภูมิ (Secondary Data) ของอัตราแลกเปลี่ยน (บาทต่อเยน, บาทต่อคอลล่าร์สิงค์โปร์ และบาทต่อคอลล่าร์ฮ่องกง) และการลงทุนโดยตรงของ ประเทศญี่ปุ่น สิงค์โปร์ ฮ่องกงในประเทศไทย ซึ่งข้อมูลที่นำมาวิเคราะห์ทั้งหมดเป็นข้อมูลอนุกรม เวลาแบบรายเดือน ตั้งแต่เดือน มกราคม 2547 ถึงเดือน มีนาคม 2553 รวมทั้งหมด 75 ข้อมูล

3.2 การเก็บรวบรวมข้อมูลและการวิเคราะห์ข้อมูล

การศึกษาครั้งนี้ใช้ข้อมูลทุติยภูมิอนุกรมเวลา (Time Series data) แบบรายเคือน ตั้งแต่ เดือนมกราคม 2547 ถึงเดือน มีนาคม 2553 โดยข้อมูลที่ใช้คืออัตราแลกเปลี่ยน (บาทต่อเยน, บาท ต่อดอลล่าร์สิงค์โปร์ และบาทต่อดอลล่าร์ฮ่องกง) เก็บรวบรวมจากกองทุนการเงินระหว่างประเทศ (International Monetary Fund: IMF) และธนาคารแห่งประเทศไทย (BOT) ส่วนการลงทุนโดยตรง ของประเทศญี่ปุ่น สิงค์โปร์ ฮ่องกงในประเทศไทยเก็บรวบรวมจากข้อมูลของกรมเศรษฐกิจพาณิชย์ กระทรวงพาณิชย์, ธนาคารแห่งประเทศไทย (BOT) และอินเตอร์เน็ต

3.3 การวิเคราะห์ข้อมูล

การวิเคราะห์ข้อมูลเชิงปริมาณ (Quantitative Analysis) โดยวิธีการทางเศรษฐมิติเพื่อศึกษา ความสัมพันธ์ระหว่างอัตราแลกเปลี่ยน (บาทต่อเยน, บาทต่อดอลล่าร์สิงค์โปร์ และบาทต่อดอลล่าร์ ฮ่องกง) และการลงทุนโดยตรงของประเทศญี่ปุ่น สิงค์โปร์ ฮ่องกงในประเทศไทย

3.3.1 การทดสอบความนิ่งของข้อมูล (Unit Root Test)

การศึกษาในครั้งนี้ใช้วิธีการทดสอบ Unit Root ตามวิธีการของ Augmented Dicky and Fuller test (ADF Test) เพื่อป้องกันการเกิดปัญหา autocorrelation โดยมีรูปแบบสมการ ในการทดสอบ 3 แบบ ดังนี้

$$\Delta X_{t} = \alpha X_{t-1} + \sum_{i=1}^{k} \beta_{i} \Delta X_{t-i} + u_{t}$$
(3.1)

$$\Delta X_{t} = \delta + \alpha X_{t-1} + \sum_{i=1}^{k} \beta_{i} \Delta X_{t-i} + u_{t}$$
(3.2)

$$\Delta X_{t} = \delta + \gamma t + \alpha X_{t-1} + \sum_{i=1}^{k} \beta_{i} \Delta X_{t-i} + u_{t}$$
(3.3)

เมื่อ
$$\Delta X_t$$
 = $X_t - X_{t-1}$

$$\alpha = (\rho - 1)$$

$$\delta = \text{ค่าคงที่ (intercept)}$$

$$\gamma = \text{ค่าสัมประสิทธิ์ของ time trend}$$

$$k = \text{จำนวน lag values of first difference of the dependent variable}$$

$$u_t = \text{ค่าความคลาดเคลื่อน}$$

สมการ (3.1) เป็นการพิจารณาข้อมูลอนุกรมเวลา ในกรณีที่ไม่มีส่วนประกอบของ intercept และ trend หรือเรียกว่า random walk model ในขณะที่สมการ (3.2) พิจารณา intercept ร่วมด้วย และ เมื่อพิจารณาทั้ง intercept และ trend ตามสมการ (3.3) โดยมีสมมติฐานในการทดสอบดังนี้

สมมุติฐานในการทคสอบคุณสมบัติ Stationary

 $H_0: lpha=0$ (ตัวแปร X_ι มีคุณสมบัติเป็น Non-Stationary) $H_0: lpha<0$ (ตัวแปร X_ι มีคุณสมบัติเป็น Stationary)

โดยกำหนดให้ X, คือ ตัวแปรที่เป็นข้อมูลอนุกรมเวลาที่เราต้องการศึกษา คืออัตรา แลกเปลี่ยน (บาทต่อเยน, บาทต่อดอลล่าร์สิงค์โปร์ และบาทต่อดอลล่าร์ฮ่องกง) และการลงทุน โดยตรงของประเทศญี่ปุ่น สิงค์โปร์ ฮ่องกงในประเทศไทย

3.3.2 การวิเคราะห์ความสัมพันธ์โดยใช้จะใช้วิธีกำลังสองน้อยที่สุด (Ordinary Least Square Method)

รูปแบบความสัมพันธ์ระหว่างตัวแปรต้นกับตัวแปรอิสระรวมถึงตัวคลาดเคลื่อนจะต้อง
เป็นแบบเส้นตรง ซึ่งเป็นการวิเคราะห์ความสัมพันธ์ของอัตราแลกเปลี่ยนและการลงทุนโดยตรง
ของประเทศญี่ปุ่น สิงค์โปร์ ฮ่องกงในประเทศไทยซึ่งอาจจะมีความสัมพันธ์มากน้อยหรือไม่มีเลย
และอาจจะสัมพันธ์ไปในทิศทางเดียวกันหรือตรงข้ามกัน ซึ่งเราสามารถทราบถึงขนาดและทิศทาง
ของความสัมพันธ์ดังกล่าวได้จากค่าสัมประสิทธิ์สหสัมพันธ์ โดยใช้สมการดังนี้

$$EXR_{t} = \alpha_{0} + \alpha_{1}FDI_{t} + e_{t} \tag{3.4}$$

$$FDI_{t} = \beta_{0} + \beta_{1}EXR_{t} + U_{t}$$

$$(3.5)$$

เมื่อ EXR, คือ อัตราแลกเปลี่ยน (บาทต่อเยน, บาทต่อคอลล่าร์สิงค์โปร์ และบาทต่อคอลล่าร์ ฮ่องกง) ณ เวลา t

 FDI_{t} คือ การลงทุนโดยตรงของประเทศญี่ปุ่น สิงค์โปร์ ฮ่องกงในประเทศไทย ณ เวลา t $lpha_{0},eta_{0}$ คือ ค่าคงที่

 e_{t},U_{t} คือ ค่า Residual ณ เวลา t

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved